Browse > Article

Sulfonated Perfluorocyclobutyl Biphenylene Polymer Electrolyte Membranes for Fuel Cells  

Yoo Min-Chul (Interface Materials & Eng. Lab. Division of Advanced Chemical Technology, Korea Research Institute of Chemical Technology, Department of Chemical Engineering, Chungnam National University)
Chang Bong-Jin (Interface Materials & Eng. Lab. Division of Advanced Chemical Technology, Korea Research Institute of Chemical Technology)
Kim Jeong-Hoon (Interface Materials & Eng. Lab. Division of Advanced Chemical Technology, Korea Research Institute of Chemical Technology)
Lee Soo-Bok (Interface Materials & Eng. Lab. Division of Advanced Chemical Technology, Korea Research Institute of Chemical Technology)
Lee Yong-Taek (Department of Chemical Engineering, Chungnam National University)
Publication Information
Membrane Journal / v.15, no.4, 2005 , pp. 355-362 More about this Journal
Abstract
A PFCB-containing biphenylene ether polymer was synthesized and sulfonated using chlorosulfonic acid and then cast into membranes from their solutions for fuel cell applications. Sulfonation reactions were carried out by changing the molar ratio of chlorosulfonic acid and the PFCB-containing biphenylene ether polymer under fixed time and temperature. The resulting sulfonated polymers showed different sulfonation degree (SD), ion exchange capacity (IEC), and water uptake. With the increment of the content of chlorosulfonic acid, the SD, IEC, water uptake of the sulfonated polymer membranes increased. The ion conductivity of the sulfonated PFCB-containing biphenylene ether polymers was compared with that of Nafion 115.
Keywords
sulfonated polymer electrolyte membrane; biphenylene ether polymer; perfluorocyclobutane ring; fuel cell;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Schultz and K. Sundmacher, 'Mass, charge and energy transport phenomena in a polymer electrolyte membrane (PEM) used in a direct methanol fuel cell (DMFC) : Modelling and experimental validation of fluxes', J. Membr. Sci., Article in press
2 C. H. Wirguin, 'Recent advances in perfluorinated ionomer membrane:structure, properties', J. Membr. Sci., 120, 01 (1996)
3 X. Shang, S. Tian, L. Kong, and Y. Meng, 'Synthesis and characterization of sulfonated fluorene-containing poly(arylene ether ketone) for proton exchange membrane', J. Membr. Sci., 266, 94 (2005)
4 Y. Z. Fu and A. Manthiram, 'Synthesis and characterization of sulfonated polysulfone membranes for direct methanol fuel cells', J. Power Sources, Article in press
5 F. Wang, J. Li, T. Chen, and J. Xu, 'Synthesis of poly( ether ether ketone) with high content of sodium sulfonate groups and its membrane characteristics', Polymer, 40, 795 (1999)
6 Q. Guo, P. N. Pintauro, H. Tang, and S. O'Connor, 'Sulfonated and crosslinked polyphosphazene-based proton exchange membranes', J. Membr. Sci., 154, 175 (1999)
7 S. L. Chen, A. B. Bocarsly, and J. Benziger, 'Nafion-Iayered sulfonated polysulfone fuel membrane', J. Power Sources, 152, 27 (2005)   DOI   ScienceOn
8 J. Larminie and A. Dicks, 'fuel cell system explained', pp. 14-16, John wiley & Sons, New York (2000)
9 D. A. Babb, 'Fluoropolymers l: Synthesis', edited by Hougham et al., pp. 25-50, Plenum Press, New York (1999)
10 L. Carrette, K. A. Friedrich, and U. Stimming, 'Fundamentals and Applications', Fuel cells, 1, 1 (2001)
11 S. Kaliaguine, S. D. Mikhailenko, K. P. Wang, P. Xing, G. Robertson, and M. Guiver, 'Properties of SPEEK based PEMs for fuel cell application', Catal. Today, 82, 213 (2003)   DOI   ScienceOn
12 D. A. Babb, K. S. Clement, W. F. Richey, and B. R. Ezzell, 'Perfluorocyclobutane ring-containing polymers', US Patent 5,037,917 (1991)
13 J. Wei, 'Trifluorostyrene and substituted trifluorostyrene copolymeric compositions and ion-exchange membranes formed therefrom', US Patent 5,422,411 (1995)
14 R. K. Ahluwalia, X. Wang, A. Rousseau, and R. Kumar, 'Fuel economy of hydrogen fuel cell vehicles', J. Power Sources, 130, 192 (2004)
15 G. Meyer, G. Gebel, L. Gonon, P. Capron, D. Marscaq, C. Marestin, and R. Mercier, 'Degradation of sulfonated polyimide membranes in fuel cell conditions', J. Power Sources, Article in press
16 C. Ma, L. Zhang, S. Mukerjee, D. Ofer, and B. Nair, 'An investigation of proton conduction in select PEM's and reaction layer interfaces-designed for elevated temperature operation', J. Membr. Sci., Article in press
17 P. Staiti, F. Lufrano, A. S. Arico, E. Passalacqua, and V. Antonucci, 'Sulfonated polybenzimidazole membranes-preparation and physico-chemical characterization', J. Membr. Sci., 188, 71 (2001)
18 J. Stephens, 'Fuel processing for fuel cell power systems', Fuel Cells Bulletins, 12, 6 (1999)
19 J. P. Shin, B. J. Chang, J. H. Kim, S. B. Lee, and D. H. Sub, 'Sulfonated polystyrene/PTFE composite membranes', J. Membr. Sci., 251, 247 (2005)
20 S. Kunda, I,. C. Simon, M. Fowler, and S. Grot, 'Mechanical properties of $Nafion^{TM}$ electrolyte membranes under hydrated conditions', Polymer, 46, 11707 (2005)   DOI   ScienceOn