• Title/Summary/Keyword: Ion-exchange fibers

Search Result 22, Processing Time 0.022 seconds

Research on Preparation of Sheath-Core Bicomponent Composite Ion Exchange Fibers and Absorption Properties to Metal Ion

  • Ding, Zhi-Jia;Qi, Lu;Ye, Jian-Zhong
    • Macromolecular Research
    • /
    • v.16 no.1
    • /
    • pp.21-30
    • /
    • 2008
  • Based on the sheath-core bicomponent composite fibers with modified polystyrene (PS) and the modified polypropylene (PP), composite fibers obtained were further cross-linked and sulphonated with chlorosulphonic acid to produce strong acidic cation ion exchange fibers. The structures of the fibers obtained were characterized using Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC) etc. The optimal technology of the fibers obtained is discussed. The static absorption capacity of the sheath-core bicomponent composite cation exchange fibers for $Zn^{2+}$, $Cu^{2+}$ was determined. The absorption kinetics and major factors affecting the absorption capacities of $Zn^{2+}$, $Cu^{2+}$ were studied, and its chemical stability and regenerating properties were probed. The results suggest that cation exchange fibers with better mechanical properties and higher exchange capability were obtained. Moreover, this type of ion exchange fiber has good absorption properties and working stability to various metal ions. Hence, they have higher practicability.

Synthesis of POF Cation Exchange Fibers Using PE Coated PP Matrix by Radiation-Induced Polymerization and Their Adsorption Properties for Heavy Metals (방사선 중합법에 의한 PE 코팅 PP 복합섬유를 이용한 가교 및 비가교 POF 양이온교환 섬유의 합성 및 중금속 흡착)

  • Cho, In-Hee;Baek, Ki-Wan;Lim, Youn-Mook;Nho, Young-Chang;Hwsng, Taek-Sung
    • Polymer(Korea)
    • /
    • v.31 no.3
    • /
    • pp.239-246
    • /
    • 2007
  • The sulfonated ion exchange fibers were synthesized by $Co^{60}\;{\gamma}-ray$ radiation-induced graft copolymerization. Degree of grafting was increased with increasing the total dose. The degree of grafting for POF-g-St/DVB copolymer was 1000%. The ion exchange capacity of sulfonated ion exchange fibers were increased by increasing the degree of sulfonation. Its maximum value was 5.06 meq/g. The ion exchange capacity of sulfonated POF- co-St/DVB ion exchange fiber was higher than that of the sulfonated POF- co-styrene ion exchange fibers. The amount of adsorption for heavy metals were also increased with increase in the degree of grafting of the ion exchange fibers.

Adsorption Properties for Heavy Metals Using Hybrid Son Exchange Fibers with Sulfonated PONF-g-Styrene by Radiation Polymerization and Cation Exchange Resin (방사선 중합 설폰화 PONF-g-스티렌과 양이온교환수지 복합 이온교환섬유의 중금속 흡착 특성)

  • Baek, Ki-Wan;Cho, In-Hee;Nho, Young-Chang;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.30 no.6
    • /
    • pp.525-531
    • /
    • 2006
  • In this study, Sulfonated PONF-g-styrene ion exchange fibers were synthesized by radiation induced graft copolymerization. And also, hybride ion exchange fibers, which was combined sulfonated PONF-g-styrene fibers and cationic ion exchange resin, were fabricated by hot melt adhesion method and then their adsorption properties were investigated. ion exchange capacity and water content of hybrid ion exchange fibers increased as compared with those of bead and ion exchange fiber. Their maximum values were 4.76 meq/g and 23.5%, respectively. Adsorption breakthrough time for mercury of hybrid ion exchange fiber was slower than those of bead resin and fibrous ion exchanger. It's value was 130 minutes. Their breakthrough time become short as increasing of pH, and concentration. The initial breakthrough time was observed before and after 10 minutes as increasing of concentration. The adsorption of hybrid ion exchange fibers for $Hg^{2+}\;Pb^{2+},\;Cd^{2+}$ among heavy metals in the mixed solution was observed before 20 min. And also, The adsorption for $Hg^{2+}$ among the heavy metals by hybride ion exchange fibers was observed.

Synthesis of Hybrid Cation Exchange Fibers by E-Beam Preirradiation and Their Adsorption Properties for Metal Ions (E-Beam 전조사법을 이용한 복합양이온 교환섬유의 합성 및 금속이온 흡착특성)

  • Baek Ki-Wan;Nho Young-Chang;Hwang Taek-Sung
    • Polymer(Korea)
    • /
    • v.30 no.4
    • /
    • pp.305-310
    • /
    • 2006
  • The hybrid cation exchange fibers using graft copolymer of styrene onto PE/PP with PET trunk polymers were synthesized by electron beam preirradiation. The degree of grafting showed 123% value at 80% concentration of styrene. And also, amount of sulfonyl group in the ion exchanger was showed 3.3 mmol/g at 70% concentration of styrene and their values were constant after 70%. The tensile strength for fibers was lower than trunk fibers, and their value of ion exchange fibers were also below than copolymer. It was $0.206kgf/mm^2$ value. The breakthrough time for Ca and Mg ions of hybrid cation exchange fibers were increased with the increase in the pH and temperature. The breakthrough of Mg was slower the mixture than single Mg solution. Adsorption rate constant for Ca, Mg ions and maximum ion exchange capacity were 0.012, 0.011 L/mg.h and 47.06, 42.83 mg/g, and also, activation energies were 2169 and 1534 J/mol, respectively.

Preparation of Hybrid Cation Ion Exchange Fibers by Web Spray and Their Adsorption Properties for Ammonia Gas (Web Spray 법을 이용한 복합 양이온교환섬유의 제조 및 암모니아 흡착특성)

  • Park, Seong-Wook;Lee, Hoo-Kun;Rhee, Young-Woo;Jung, Boo-Young;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.31 no.6
    • /
    • pp.479-484
    • /
    • 2007
  • In this study, the hybrid ion exchange fibers (HIEF) were prepared by using web spraying muthod with hot melt adhesive. Characteristics of HIEF and their adsorption properties for ammonia gas were investigated. The ion exchange capacity (IEC) of HIEF was increased with increasing the resin contents and their values were higher than those of pure resin and ion exchange fabrics. The removal efficiency for ammonia gas increased with an increase in packing density of hybrid ion exchange fabrics in the column. The adsorption breakthrough time was 270 min, which was slower than those of the resin and fibers. The maximum value of adsorption for ammonia gas was 94%. The breakthrough time was also increased with increasing the concentration and flow rate of ammonia gas. The reaction constant(k) for ammonia gas was increased with increasing the concentration and flow rate of the gas, while it was decreased an the mass was increased.

Synthesis of Sulfonated PET-g-GMA Fine Ion-exchange Fibers for Water Treatment by Photopolymerization and Their Adsorption Properties for Metal Ions (광중합법을 이용한 수처리용 설폰산형 PET-g-GMA 극세 이온 교환 섬유의 합성 및 금속 이온 흡착 특성)

  • Kwak Noh-Seok;Hwang Taek-Sung;Kim Sun-Mi;Yang Yun-Kyu;Kang Kyung-Seok
    • Polymer(Korea)
    • /
    • v.28 no.5
    • /
    • pp.397-403
    • /
    • 2004
  • The sulfonated PET-g-GMA ion-exchange fine fibers were synthesized by UV radiation-induced graft copolymerization using a photoinitiator, and their chemical structure and adsorption properties were investigated. The optimum values for synthetic conditions - UV intensity, reaction time, and reaction temperature were 450 W, 60 min, and $40^{\circ}C$, respectively. Maximum values of the degree of sulfonation and ion exchange capacity were 8.12 mmol/g and 3.25 meq/g, respectively. Tensile strength of sulfonated PET-g-GMA fine ion exchange fibers was lower than that of PET trunk polymer as the grafting reaction rates increased. It was shown that as for the adsorption rate of $Ca^{2+}$ and $Mg^{2+}$ by the sulfonated PET-g-GMA fine ion exchange fibers, magnesium ion is slower than calcium ion in the solution. However, in the mixture of the calcium and magnesium ions, the adsorption rate of calcium ion was much slower than that of magnesium ion.

Synthesis of Sulfonated POF-g-Styrene ion Exchange Fibers by Radiation-Induced Polymerization and Properties of Ammonia Adsorption (방사선 중합에 의한 설폰화 POF-g-Styrene 이온교환 섬유의 합성 및 암모니아 흡착)

  • Cho, In-Hee;Baek, Ki-Wan;Lee, Chang-Soo;Nho, Young-Chang;Yoon, Soo-Kyung;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • In this study, the sulfonated ion exchange fiber was synthesized by $Co^{60}\;{\gamma}-ray$ radiation-induced graft copolymerization. Degree of grafting (DG) increased with increasing the total dose and showed the highest value at 50 v/v% styrene monomer. And also, the degree of sulfonation (DS) increased with increasing the DG and reaction temperature. DS showed the maximum value at 20 min. Ion exchange capacity and swelling ratio of ion exchange fibers increased with increasing the DS and their maximum values were 4.76 meq/g and 23.5%, respectively. Ammonia adsorption increased as increasing the ammonia concentration and ion exchange capacity and remained constant over 10 cycles.

Adsorption Properties of Oxidized NO by Plasma Using Hybrid Anion-Exchange Fibers (복합음이온 교환섬유의 플라스마 산화 처리한 NO의 흡착특성)

  • Cho In-Hee;Kang Kyung-Seok;Hwang Taek-Sung
    • Polymer(Korea)
    • /
    • v.30 no.4
    • /
    • pp.291-297
    • /
    • 2006
  • In this study, adsorption properties of oxidized NO by plasma using aminated polyolefin-g-GMA hybrid anion exchange fibers were investigated. The maximum conversion of $NO_2$ by plasma was 49% at the conditions of 200 ppm NO, 10% $O_2$ and 30 L/min of flow rate. The adsorption content for N02 of hybrid anion exchange fibers increased with increasing the swelling ratio and the highest value was 1.5 g $H_2O/g$ IEF. The adsorption of $NO_2$ by hybrid anion exchange fibers were very fast until 10 min and reached its maximum value of 80% at 120 min. Ion exchange capacity of hybrid anion exchange fibers increased with increasing the swelling ratio and it showed the highest 0.6 mmol/g IEF values at L/D=5. The adsorption isotherm model for hybrid anion exchange fibers were closer to Freundlich than Langmuir adsorption isotherm model. It was shown that adsorption of the multi-molecular layer was dominant.

Effect of Cations on the Sorption and the Tensile Properties of CMC Fibers (CMC섬유내의 양이온이 섬유의 흡습성과 인장 성질에 미치는 영향)

  • 이미식
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.18 no.1
    • /
    • pp.113-120
    • /
    • 1994
  • The Purpose of this study was to improve the moisture related properties of viscose rayon fibers. Viscose rayon filament yarns were partially etherified to make CMC fibers. CMC fibers were converted to the sodium, calcium, and ferric salt forms by an ion exchange method. The property changes of ion exchanged CMC fibers were examined. Cation contents of fibers were varied depending on the degree of substitution of CMC fibers. The strength of Na, Ca, Fe-CMC was higher than H-CMC owing to the plasticization by moisture sorption and the crosslinking by cations. The moisture regain was increased by carboxymethylation and that of Fe-CMC showed the highest value. The degree of swelling determined by the water retention value was observed to be Na-CMC > Ca-CMC > H-CMC > Fe-CMC. The solution retention value was decreased in the order . Ca-CMC > Na-CMC > H-CMC > Fe-CMC.

  • PDF

Decolorization of Aqueous Caprolactam Solution by Anion-exchange Resins

  • Yuan Zhen;Yu Ping;Luo Yunbai
    • Fibers and Polymers
    • /
    • v.7 no.2
    • /
    • pp.112-116
    • /
    • 2006
  • Caprolactam is the most important raw material for making Nylon 6 fibers and its quality directly determines the quality of Nylon. So it is necessary to study the techniques and methods to remove the colorful impurities from caprolactam. In this paper, the decolorization of caprolactam aqueous solution by anion exchange resins was studied and the decoloring abilities of five commercial resins were investigated. The regeneration of the resins was also studied, too. This study shows that the resin AMTX202 have excellent decoloring ability in the column experiment and that the decoloring efficiency is correlated with the volume of resins packed and is slightly affected by the flow rate and regenerating times. The fact that the resins can be regenerated and reused without affecting the efficiency of decolorization will decrease the cost of the treatment and operation in the industry. The adsorption of colored compounds with anion exchange resins in the packed columns seems to be technically feasible.