Synthesis of Hybrid Cation Exchange Fibers by E-Beam Preirradiation and Their Adsorption Properties for Metal Ions

E-Beam 전조사법을 이용한 복합양이온 교환섬유의 합성 및 금속이온 흡착특성

  • Baek Ki-Wan (School of Advanced Materials Engineering, College of Engineering, Chungnam National University) ;
  • Nho Young-Chang (Korea Atomic Energy Research Institute) ;
  • Hwang Taek-Sung (School of Advanced Materials Engineering, College of Engineering, Chungnam National University)
  • 백기완 (충남대학교 공과대학 신소재공학부) ;
  • 노영창 (한국원자력연구소 방사선응용연구팀) ;
  • 황택성 (충남대학교 공과대학 신소재공학부)
  • Published : 2006.07.01

Abstract

The hybrid cation exchange fibers using graft copolymer of styrene onto PE/PP with PET trunk polymers were synthesized by electron beam preirradiation. The degree of grafting showed 123% value at 80% concentration of styrene. And also, amount of sulfonyl group in the ion exchanger was showed 3.3 mmol/g at 70% concentration of styrene and their values were constant after 70%. The tensile strength for fibers was lower than trunk fibers, and their value of ion exchange fibers were also below than copolymer. It was $0.206kgf/mm^2$ value. The breakthrough time for Ca and Mg ions of hybrid cation exchange fibers were increased with the increase in the pH and temperature. The breakthrough of Mg was slower the mixture than single Mg solution. Adsorption rate constant for Ca, Mg ions and maximum ion exchange capacity were 0.012, 0.011 L/mg.h and 47.06, 42.83 mg/g, and also, activation energies were 2169 and 1534 J/mol, respectively.

전자선 전조사를 이용하여 PE/PP와 PET 복합섬유 기재에 스티렌을 그래프트 공중합하여 복합양이온 교환 섬유를 합성하였다. 공중합체의 그래프트율은 스티렌 단량체의 농도가 80%일때 123%이었으며 설폰화율은 스티렌 농도 70%에서 3.3 mmol/g 이었으며 그 이후에서는 큰 변화가 없었다. 또한 섬유의 인장강도는 기재에 비해 모두 낮게 나타났으며, 공중합체보다 이온교환 섬유의 인장강도가 최대 $0.206kgf/mm^2$ 로 낮게 나타났다 이온교환 섬유의 칼슘 및 마그네슘 이온에 대한 흡착파과 시간은 pH, 온도가 증가할수록 길어졌으며, 혼합 용액의 경우 단일 용액에 비해 마그네슘의 흡착파과가 늦게 나타났다. 한편 칼슘 및 마그네슘에 대한 반응속도 상수는 각각 0.012, 0.011 L/mg.h 이었으며, 최대 이온교환 흡착용량은 각각 47.06, 42.83 mg/g, 활성화 에너지는 각각 2,169, 1,534 J/mol 이었다.

Keywords

References

  1. E. Yildiz, A. Nuhoglu, B. Keskinler, G. Akay, and B. Farisglu, Desalination, 159, 139 (2003) https://doi.org/10.1016/S0011-9164(03)90066-X
  2. N. Ogata, J. Atom Energ. Soc. Japan, 10, 672 (1968) https://doi.org/10.3327/jaesj.10.672
  3. E. A. Jdid and P. Blazy, Sea Technol., 25, 701 (1990)
  4. S. H. Cho, K. C. Kim, and J. S. Oh, J. KSEE, 18, 333 (1996)
  5. W. H. Hoell, CARIX Process-A Novel Approach to Desalination by Ion Exchange, Technomic Publishing Co., Pennsylvania, U.S.A., 1995
  6. R. R. Harries, The Role of pH Ion Exchange Kinetics, Ion Exchange for Industry, Ellis Horwood Limited, Chichester, 1988
  7. N. S. Kwak, T. S. Hwang, S. M. Kim, Y. K. Yang, and K. S. Kang, Polymer(Korea), 28, 397, (2004)
  8. H. C. Thomas, A Problem in kinetics, Academy of Science, New York, 1948
  9. H. J. Fornwalt and R. A Hutchins, Chem. Eng., 73, 179 (1966)
  10. E. Trommsdorff, H. Kahle, and P. Lagally, Markomol. Chem., 1, 169 (1948) https://doi.org/10.1002/macp.1948.020010301
  11. J. S. Park and Y. C. Nho, Polymer(Korea), 22, 47 (1998)
  12. A. M. Wachinski and J. E. Etzel, Environmental Ion Exchange, Lewis Publishers, New York, 1997