• Title/Summary/Keyword: Ion-doping

Search Result 334, Processing Time 0.03 seconds

Enhancement and Quenching Effects of Photoluminescence in Si Nanocrystals Embedded in Silicon Dioxide by Phosphorus Doping (인의 도핑으로 인한 실리콘산화물 속 실리콘나노입자의 광-발광현상 증진 및 억제)

  • Kim Joonkon;Woo H. J.;Choi H. W.;Kim G. D.;Hong W.
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.2
    • /
    • pp.78-83
    • /
    • 2005
  • Nanometric crystalline silicon (no-Si) embedded in dielectric medium has been paid attention as an efficient light emitting center for more than a decade. In nc-Si, excitonic electron-hole pairs are considered to attribute to radiative recombination. However the surface defects surrounding no-Si is one of non-radiative decay paths competing with the radiative band edge transition, ultimately which makes the emission efficiency of no-Si very poor. In order to passivate those defects - dangling bonds in the $Si:SiO_2$ interface, hydrogen is usually utilized. The luminescence yield from no-Si is dramatically enhanced by defect termination. However due to relatively high mobility of hydrogen in a matrix, hydrogen-terminated no-Si may no longer sustain the enhancement effect on subsequent thermal processes. Therefore instead of easily reversible hydrogen, phosphorus was introduced by ion implantation, expecting to have the same enhancement effect and to be more resistive against succeeding thermal treatments. Samples were Prepared by 400 keV Si implantation with doses of $1\times10^{17}\;Si/cm^2$ and by multi-energy Phosphorus implantation to make relatively uniform phosphorus concentration in the region where implanted Si ions are distributed. Crystalline silicon was precipitated by annealing at $1,100^{\circ}C$ for 2 hours in Ar environment and subsequent annealing were performed for an hour in Ar at a few temperature stages up to $1,000^{\circ}C$ to show improved thermal resistance. Experimental data such as enhancement effect of PL yield, decay time, peak shift for the phosphorus implanted nc-Si are shown, and the possible mechanisms are discussed as well.

Effect of Fe and BO3 Substitution in Li1+xFexTi2-x(PO4)3-y(BO3)y Glass Electrolytes (Li1+xFexTi2-x(PO4)3-y(BO3)y 계 유리 전해질에서 Fe 및 BO3 치환 효과)

  • Choi, Byung-Hyun;Jun, Hyung Tak;Yi, Eun Jeong;Hwang, Haejin
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.3
    • /
    • pp.52-64
    • /
    • 2021
  • The effect of Fe and BO3 doping on structure, thermal, and electrical properties of Li1+xFexTi2-x(PO4)3-y(BO3)y (x = 0.2, 0.5)-based glass and glass ceramics was investigated. In addition, their crystallization behavior during sintering and ionic conductivity were also investigated in terms of sintering temperature. FT-IR and XPS results indicated that Fe2+ and Fe3+ ions in Li1+xFexTi2-x(PO4)3-y(BO3)y glass worked as a network modifier (FeO6 octahedra) and also as a network former (FeO4 tetrahedra). In the case of the glass with low substitution of BO3, boron formed (PB)O4 network structure, while boron preferred BO3 triangles or B3O3 boroxol rings with increasing the BO3 content owing to boic oxide anomaly, which can result in an increased non-bridging oxygen. The glass transition temperature (GTT) and crystallization temperature (CT) was lowered as the BO3 substitution was increased, while Fe2+ lowered the GTT and raised the CT. The ionic conductivity of Li1+xFexTi2-x(PO4)3-y(BO3)y glass ceramics were 8.85×10-4 and 1.38×10-4S/cm for x = 0.2 and 0.5, respectively. The oxidation state of doped Fe and boric oxide anomaly were due to the enhanced lithium ion conductivity of glass ceramics.

Synthesis of Titanium Dioxides Using Low Temperature Combustion Method and Photocatalytic Decomposition of Methylene Blue (저온연소법에 의한 이산화티탄의 합성 및 메틸렌블루의 광촉매 분해반응)

  • Baek, Seung Hee;Jung, Won Young;Lee, Gun Dae;Park, Seong Soo;Hong, Seong-Soo
    • Applied Chemistry for Engineering
    • /
    • v.20 no.3
    • /
    • pp.329-334
    • /
    • 2009
  • Yttrium ions doped $TiO_2$ particles have been prepared using a low temperature combustion method. The physical properties were investigated, together with the activity of $TiO_2$ particles as a photocatalyst for the decomposition of methylene blue. From XRD results, the major phase of all the $TiO_2$ particles prepared under basic condition was an anatase structure but a rutile peak was observed when they are prepared under acidic condition. The crystallite size of $TiO_2$ particles was decreased as the molar ratio of CA/TTIP increased. The photocatalytic activity increased with an increase of CA/TTIP molar ratio and pH in the solution. In addition, the doping of 1.0 mole% yttrium ion on the $TiO_2$ enhanced the photocatalytic activity and showed the higher activity than commercial P-25 catalyst.

Tungsten-Doped Titania Nanopowders - Their Chemical Vapor Synthesis and Photocatalytic Activity (텅스텐이 도핑된 티타니아 나노분말의 화학기상합성 및 광촉매 활성)

  • Park, Bo-In;Kang, Kae-Myung;Jie, Hyunseock;Song, Bong-Geun;Park, Jong-Ku;Cho, So-Hye
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.6
    • /
    • pp.143-147
    • /
    • 2012
  • Photocatalytic properties of $TiO_2$ nanopowders has been received much attention due to their high potentials for environmental applications such as remediation of polluted environments. The $TiO_2$ nanopowders doped with metal or non-metal elements have been synthesized by variety methods such as flame method, chemical vapor synthesis, sol-gel, ion implantation, which affect a doping behavior in different ways resulting in different surface characteristics, leading to different photocatalytic activity. In addition to an effect of synthesis methods, the photocatalytic activity of $TiO_2$ nanopowders can be improved by subsequent heat-treatments. In this study, to obtain a highly efficient photocatalyst, we synthesized $TiO_2$ nanopowders doped with tungsten by the chemical vapor synthesis method (CVS) and determined their physical properties and photocatalytic activity, together with subsequent post-treatment in the range of $300^{\circ}C$ to $700^{\circ}C$.

Optimum Design of Junctionless MOSFET Based on Silicon Nanowire Structure and Analysis on Basic RF Characteristics (실리콘 나노 와이어 기반의 무접합 MOSFET의 최적 설계 및 기본적인 고주파 특성 분석)

  • Cha, Seong-Jae;Kim, Kyung-Rok;Park, Byung-Gook;Rang, In-Man
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.10
    • /
    • pp.14-22
    • /
    • 2010
  • The source/channel/drain regions are formed by ion implantation with different dopant types of $n^+/p^{(+)}/n^+$ in the fabrication of the conventional n-type metal-oxide-semiconductor field effect transistor(NMOSFET). In implementing the ultra-small devices with channel length of sub-30 nm, in order to achieve the designed effective channel length accurately, low thermal budget should be considered in the fabrication processes for minimizing the lateral diffusion of dopants although the implanted ions should be activated as completely as possible for higher on-current level. Junctionless (JL) MOSFETs fully capable of the the conventional NMOSFET operations without p-type channel for enlarging the process margin are under researches. In this paper, the optimum design of the JL MOSFET based on silicon nanowire (SNW) structure is carried out by 3-D device simulation and the basic radio frequency (RF) characteristics such as conductance, maximum oscillation frequency($f_{max}$), current gain cut-off frequency($f_T$) for the optimized device. The channel length was 30 run and the design variables were the channel doping concentration and SNW radius. For the optimally designed JL SNW NMOSFET, $f_T$ and $f_{max}$ high as 367.5 GHz and 602.5 GHz could be obtained, respectively, at the operating bias condition $V_{GS}$ = $V_{DS}$ = 1.0 V).

Visible Light Responsive Titanium Dioxide (TiO2) (가시광 감응 산화티탄(TiO2))

  • Shon, Hokyong;Phuntsho, Sherub;Okour, Yousef;Cho, Dong-Lyun;Kim, Kyoung Seok;Li, Hui-Jie;Na, Sukhyun;Kim, Jong Beom;Kim, Jong-Ho
    • Applied Chemistry for Engineering
    • /
    • v.19 no.1
    • /
    • pp.1-16
    • /
    • 2008
  • Titanium dioxide ($TiO_2$) is one of the most researched semiconductor oxides that has revolutionised technologies in the field of environmental purification and energy generation. It has found extensive applications in heterogenous photocatalysis for removing organic pollutants from air and water and also in hydrogen production from photocatalytic water-splitting. Its use is popular because of its low cost, low toxicity, high chemical and thermal stability. But one of the critical limitations of $TiO_2$ as photocatalyst is its poor response to visible light. Several attempts have been made to modify the surface and electronic structures of $TiO_2$ to enhance its activity in the visible light region such as noble metal deposition, metal ion loading, cationic and anionic doping and sensitisation. Most of the results improved photocatalytic performance under visible light irradiation. This paper attempts to review and update some of the information on the $TiO_2$ photocatalytic technology and its accomplishment towards visible light region.

Synthesis and Densification Behavior of Al Doped (La0.8Ca0.2)(Cr0.9Co0.1)O3(LCCC) Ceramics for SOFC Interconnects (SOFC 연결재용 Al이 도핑된 (La0.8Ca0.2)(Cr0.9Co0.1)O3(LCCC)계 세라믹스의 합성 및 치밀화 특성)

  • Lee, Ho-Young;Kang, Bo-Kyung;Lee, Ho-Chang;Heo, Young-Woo;Kim, Jeong-Joo;Kim, Jae-Yuk;Lee, Joon-Hyung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.5
    • /
    • pp.392-397
    • /
    • 2012
  • In the $(La_{0.8}Ca_{0.2})(Cr_{0.9}Co_{0.1})O_3$ (LCCC), which has been using as interconnector materials in SOFC, Al ions were substituted for Co because ionic radius of Al is similar to that of Co. Because of the almost identical ionic radius of Al and Co, the substitution was not thought to be affect the tolerance factor of LCCC, and the densification behavior, high temperature electrical conductivity and thermal expansion coefficient were examined as a function of Al concentration. In the cases of the x= 0 and x= 0.02 in $(La_{0.8}Ca_{0.2})(Cr_{0.9}Co_{0.1-x}Al_x)O_3$ (x= 0~0.1), the samples showed the relative densities above ${\geq}95%$ when those were sintered at ${\geq}1,350^{\circ}C$. In the case of the $x{\geq}0.06$ the sintered density deteriorated greatly at lower sintering temperatures. High temperature electrical conductivity of the samples decreased as the content of Al increased. Since the valence state of Al ion is unchangeable, while Cr or Co ions contribute to the electrical conduction by changing those valence states, Al substitution resulted in the decreased electrical conductivity. Al doping of LCCC was an effective way of decreasing the thermal expansion coefficient (TEC).

Electrical properties and degradation behavior of Tm2O3 doped barium titanate ceramics for MLCCs (Tm2O3가 첨가된 MLCC용 BaTiO3 유전체의 전기적 특성 및 열화거동)

  • Kim, Do-Wan;Kim, Jin-Seong;Hui, K.N.;Lee, Hee-Soo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.6
    • /
    • pp.278-282
    • /
    • 2010
  • The doping effect of thulium on electrical properties and degradation behavior in barium titanate ceramics ($BaTiO_3$) was investigated in terms of generations of core-shell structure and micro-chemical changes through highly accelerated degradation test. The dielectric specimens of pellet type and multi-layered sheets were prepared by using $BaTiO_3$ with undoped and doped with 1 mol% $Tm_2O_3$. The $BaTiO_3$ ceramics doped with 1 mol% $Tm_2O_3$ had 40% higher dielectric constant (${\varepsilon}$ = 2700) than that of the undoped $BaTiO_3$ specimen at curie temperature and met X7R specification. According to the result of highly accelerated degradation test conducted at $150^{\circ}C$, 70 V, and 24 hr, the oxygen diffusion was declined in dielectrics doped with 1 mol% $Tm_2O_3$. The $Tm^{3+}$ ion substituted selectively Ba site and Ti site and contributed to the generation of the core-shell structure. Oxygen vacancies occurred by substitution for Ti site could reduce excess oxygen that reacted to the Ni electrode.

Upconversion luminescence from poly-crystalline Yb3+, Er3+ co-doped NaGd(MoO4)2 by simple solid state method (Er3+, Yb3+ 이온이 동시 도핑된 NaGd(MoO4)2의 업컨버젼 분석)

  • Kang, Suk Hyun;Kang, Hyo Sang;Lee, Hee Ae;Shim, Kwang Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.4
    • /
    • pp.159-163
    • /
    • 2016
  • Up-conversion (UC) luminescence properties of polycrystalline $Er^{3+}/Yb^{3+}$ doped $NaGd(MoO_4)_2$ phosphors synthesized by a simple solid-state reaction method were investigated in detail. Used to 980 nm excitation (InfraRed area), $Er^{3+}/Yb^{3+}$ co-doped $NaGd(MoO_4)_2$ exhibited very weak red emissions near 650 and 670 nm, and very strong green UC emissions at 540 and 550 nm corresponding to the infra 4f transitions of $Er^{3+}(^4F_{9/2},\;^2H_{11/2},\;^4S_{3/2}){\rightarrow}Er^{3+}(^4I_{15/2})$. The optimum doping concentration of $Er^{3+}$, $Yb^{3+}$ for highest emission intensity was determined by XRD and PL analysis. The $Er^{3+}/Yb^{3+}$ (10.0/10.0 mol%) co-doped $NaGd(MoO_4)_2$ phosphor sample exhibited very strong shiny green emission. A possible UC mechanism for $Er^{3+}/Yb^{3+}$ co-doped $NaGd(MoO_4)_2$ depending on the pump power dependence was discussed.

Chimie Douce Synthesis of Chalcogen-Doped Manganese Oxides (칼코겐이 도핑된 망간 산화물의 저온합성 연구)

  • Hwang, Seong-Ju;Im, Seung-Tae;Park, Dae-Hun;Yun, Yeong-Su
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.4
    • /
    • pp.315-320
    • /
    • 2006
  • manganese oxides have been prepared by Chimie Douce redox reaction between permanganate and chalcogen element fine powder under acidic condition (pH = 1). According to powder X-ray diffraction analyses, the S- and Se-doped manganese oxides are crystallized with layered birnessite and tunnel-type -MnO2 structures, respectively. On the contrary, Te-doped compound was found to be X-ray amorphous. According to EDS analyses, these compounds contain chalcogen dopants with the ratio of chalcogen/manganese = 4-7%. We have investigated the chemical bonding character of these materials with X-ray absorption spectroscopic (XAS) analysis. Mn K-edge XAS results clearly demonstrated that the manganese ions are stabilized in octahedral symmetry with the mixed oxidation states of +3/+4. On the other hand, according to Se K- and Te L1-edge XAS results, selenium and tellurium elements have the high oxidation states of +6, which is surely due to the oxidation of neutral chalcogen element by the strong oxidant permanganate ion. Taking into account their crystal structures and Mn oxidation states, the obtained manganese oxides are expected to be applicable as electrode materials for lithium secondary batteries.