Browse > Article

Synthesis of Titanium Dioxides Using Low Temperature Combustion Method and Photocatalytic Decomposition of Methylene Blue  

Baek, Seung Hee (Department of Chemical Engineering, Pukyong National University)
Jung, Won Young (Department of Chemical Engineering, Pukyong National University)
Lee, Gun Dae (Department of Chemical Engineering, Pukyong National University)
Park, Seong Soo (Department of Chemical Engineering, Pukyong National University)
Hong, Seong-Soo (Department of Chemical Engineering, Pukyong National University)
Publication Information
Applied Chemistry for Engineering / v.20, no.3, 2009 , pp. 329-334 More about this Journal
Abstract
Yttrium ions doped $TiO_2$ particles have been prepared using a low temperature combustion method. The physical properties were investigated, together with the activity of $TiO_2$ particles as a photocatalyst for the decomposition of methylene blue. From XRD results, the major phase of all the $TiO_2$ particles prepared under basic condition was an anatase structure but a rutile peak was observed when they are prepared under acidic condition. The crystallite size of $TiO_2$ particles was decreased as the molar ratio of CA/TTIP increased. The photocatalytic activity increased with an increase of CA/TTIP molar ratio and pH in the solution. In addition, the doping of 1.0 mole% yttrium ion on the $TiO_2$ enhanced the photocatalytic activity and showed the higher activity than commercial P-25 catalyst.
Keywords
$TiO_2$ particles; yttrium ions; low temperature combustion method; photocatalytic decomposition; methylene blue;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 S. A. Larson and J. L. Falconer, Appl. Catal. B: Env., 4, 325 (1994)   DOI   ScienceOn
2 V. Iliev and D. Tomova, Appl. Catal. B, 63, 266 (2006)   DOI   ScienceOn
3 B. D. Cullity, Elements of X-Ray Diffraction. Adison-Wesley, Reading, MA (1978)
4 P. N. K. Kumar, Ph. D. Thesis, University of Twente, 7500 AE Enschede, The Netherlands (1993)
5 M. Gopal, K. Hashimoto, and T. Watanabe, J. Mater. Sci., 32, 6011 (1997)
6 D. Kim and S. I. Woo, Solid State Commun., 136, 554 (2005)   DOI   ScienceOn
7 X. Yan and J. He, Appl. Catal. B, 55, 243 (2005)   DOI   ScienceOn
8 P. V. Kamat and N. M. Dimitrijevic, Solar Energy, 44, 83 (1990)   DOI   ScienceOn
9 M. A. Fox and M. T. Dulay, Chem. Rev., 93, 341 (1993)   DOI
10 C. Anderson and A. J. Bard, J. Phys. Chem., 101, 2611 (1997)   DOI   ScienceOn
11 A. Larbot, J. A. Alary, J. P. Fabre, C. Guizard, and L. Cot, Better Ceramics Through Chemistry Ⅱ, 659 (1986)
12 J. M. Herrmann, H. Tahiri, Y. Ait-Icho, G. Lassaletta, A. R. Gonzalez-Elipe, and A. Fernandez, Appl. Catal. B, 13, 219 (1997)   DOI   ScienceOn
13 S. R. Yoganarasimhan and C. N. R. Rao, Trans. Fraday. Soc., 58, 1579 (1962)   DOI
14 B. E. Yoldas, J. Mater. Sci., 10, 1856 (1986)   DOI   ScienceOn
15 S. Ogawa, K. Hu, and A. J. Band, J. Phys. Chem., 101, 5707 (1997)   DOI
16 S. Matsuda and A. Kato, Appl. Catal. 8, 149 (1983)   DOI   ScienceOn
17 C. S. Turchi and D. F. Ollis, J. Catal., 122, 178 (1990)   DOI   ScienceOn
18 A. W. Zzanderna, C. N. R. Rao, and J. M. Honig, Trans. Faraday. Soc., 54, 1069 (1958)   DOI
19 M. Uno, A. Kosuga, M. Okui, K. Horisaka, and S. Yamanaka, Journal of Alloys and Compounds, 400, 270 (2005)   DOI   ScienceOn
20 K. Wolf, A. Yazdani, and P. Yates, J. Air Waste Manage. Assoc., 41, 1055 (1991)   DOI   PUBMED   ScienceOn
21 M. S. Lee, G. D. Lee, C. S. Ju, K. T Lim, and S. S. Hong, J. Korean Ind. Eng. Chem., 13, 216 (2002)
22 V. Chhabra, V. Pillai, B. K. Mishra, A. Morrone, and D. O. Shah, Langmuir, 11, 33 (1995)