• Title/Summary/Keyword: Ion-beam irradiation

Search Result 221, Processing Time 0.027 seconds

Ion-Beam Induced Changes in the Characteristics of Gd Doped Ceria (이온빔 조사에 따른 Gd-doped Ceria의 특성 변화)

  • Kim, Tae-Hyung;Ryu, Boo-Hyung;Lee, In-Ja
    • Applied Chemistry for Engineering
    • /
    • v.21 no.4
    • /
    • pp.401-404
    • /
    • 2010
  • The ion-beam induced changes in the characteristics of gadolinium doped ceria (GDC) pellets have been studied by UV-visible spectroscopy (UV-vis), SEM, and XRD. Implanted ions were protons or Xe ions with the energy of 120 keV or 5 MeV. Densely sintered pristine GDC pellets have cubic fluorite structure and are brown in color. As the ion irradiation proceeded, its color gradually turned into light black and finally into dark black. XRD patterns of GDC pellets were closely related with ion energy and the penetration depth of X-ray. It showed that upon the ion irradiation (120 keV) the lattice parameter of the cubic fluorite phase just beneath the surface is increased.

A Study on the Improvement of Adhesion according to the Process Variables of Ion Beam in the Cu/Polyimide Thin Film (이온빔의 공정변수에 따른 Cu/Polyimide 박막의 접착력향상에 관한 연구)

  • Shin Youn-Hak;Kim Myung-Han;Choi Jae-Ha
    • Korean Journal of Materials Research
    • /
    • v.15 no.7
    • /
    • pp.458-464
    • /
    • 2005
  • In microelectronics packaging, the reliability of the metal/polymer interfaces is an important issue because the adhesion strength between dissimilar materials is often inherently poor. The modification of polymer surfaces by ion beam irradiation and rf plasma is commonly used to enhance the adhesion strength of the interface. T-peel strengths were measured using a Cu/polyimide system under varying $N_2^+$ ion beam irradiation conditions for pretreatment. The measured T-peel strength showed reversed camel back shape regarding the fixed metal-layer thickness, which was quite different from the results of the 90° peel test. The elementary analysis suggests that the variation of the T-peel strength is a combined outcome of the plastic bending work of the metal and polymer strips. The results indicate that the peel strength increases with $N_2^+$ ion beam irradiation energy at the fixed metal-layer thickness.

Room Temperature Luminescence from ion Beam or Atmospheric Pressure Plasma Treated SrTiO3

  • Song, Jin-Ho;Seok, Jae-Gwon;Yeo, Chang-Su;Lee, Gwan-Ho;Song, Jong-Han;Sin, Sang-Won;Choe, Jin-Mun;Jo, Man-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.530-531
    • /
    • 2013
  • 3 MeV protonirradiated SrTiO3 (STO) single crystal exhibits a blue and green mixed luminescence. However, the same proton irradiated STO deposited with very thin Pt layer does not show any luminescence. This Pt layer involved in preventing the damage caused by arcingthat comes from tens of kV surface voltage build-up due to secondary electron induced charge up at the surface of insulator during ion beam irradiation. It implies that luminescence of ion irradiated STO originated from the modified STO surface layer caused by arcing rather than direct ion beam irradiation effect. Atmospheric pressure plasma, a simple and cost-effective method, treated STO also exhibits the same kind of blue and green mixed luminescence as the ion beam treated STO, because this plasma also creates a surface damage layer by arcing.

  • PDF

The optical characteristics of amorphous $Se_{75}Ge_{25}$ thin film by the low-energy lon beam exposure (저 에너지 이온빔 조사에 따른 비정질 $Se_{75}Ge_{25}$ 박막의 광학적 특성)

  • 이현용;오연한;정홍배
    • Electrical & Electronic Materials
    • /
    • v.7 no.2
    • /
    • pp.100-106
    • /
    • 1994
  • A bilayer film consisting of a layer of a-Se$_{75}$ Ge$_{25}$ with a surface layer of silver -100[.angs.] thick and a monolayer film of a-Se$_{75}$ Ge$_{25}$ are irradiated with 9[keV] Ga$^{+}$ ion beam. The Ga$^{+}$ ion (10$^{16}$ [ions/cm$^{2}$] exposed a-Se$_{75}$ Ge$_{25}$ and Ag/a-Se$_{75}$ Ge$_{25}$ thin films show an increase in optical absorption, and the absorption edge on irradiation with shifts toward longer wavelength. The shift toward longer wavelength called a "darkening effect" is observed also in film exposure to optical radiation(4.5*10$^{20}$ [photons/cm$^{2}$]). The 0.3[eV] edge shift for ion irradiation films is about twice to that obtained on irradiation with photons. These large changes are primarily due to structural changes, which lead to high etch selectivity and high sensitivity.

  • PDF

Pretilt angle and EO Characteristics of Liquid Crystal via Ion-beam Irradiation Angles (이온빔 조사각도에 따른 액정의 프리틸트각과 전기 광학적 특성)

  • Lee, Kang-Min;Lee, Won-Kyu;Oh, Byeong-Yun;Kim, Byoung-Yong;Han, Jin-Woo;Jeon, Ji-Yeon;Han, Jeong-Min;Lee, Sang-Keuk;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04a
    • /
    • pp.44-44
    • /
    • 2008
  • To date, rubbing has been widely used to align LC molecules uniformly. Although rubbing can be simple, it has fundamental problems such as the generation of defects by dust and static electricity, and difficulty in achieving a uniform LC alignment on a large substrate. Therefore, non contact alignment has been investigated. Ion beam induced alignment method, which provides controllability, nonstop process, and high resolution display. In this study, we investigated liquid crystal (LC) alignment with ion beam (IB) that non contact alignment technique on polyimide and electro-optical characteristics of twisted nematic (TN)-liquid crystal display (LCD) on the polyimide under various ion beam angles. In this experiment, Polyimide layer was coated on glass by spin-coating and Voltage-transmittance(VT) and response time characteristics of the TN cell were measured by a LCD evaluation system. The good characteristics of the nematic liquid crystal (NLC) alignment with the ion beam exposure polyimide surface was observed. The tilt angle of NLC on the PI surface with ion beam exposure can be measured under $1^{\circ}$ for all of irradiation angles. In addition, it can be achieved the good EO properties, and residual DC property of the ion beam aligned TN cell on polyimide surface.

  • PDF

LC Orientation Characteristics of NLC on Polyimide Surface According to Ion-beam Irradiation Angles (이온빔 조사각도에 따른 네마틱 액정의 액정 배향 특성)

  • Lee, Kang-Min;Oh, Byeong-Yun;Park, Hong-Gyu;Lim, Ji-Hun;Lee, Won-Kyu;Na, Hyun-Jae;Kim, Byoung-Yong;Han, Jeong-Min;Lee, Sang-Keuk;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.329-329
    • /
    • 2008
  • To date, rubbing has been widely used to align LC molecules uniformly. Although rubbing can be simple, it has fundamental problems such as the generation of defects by dust and static electricity, and difficulty in achieving a uniform LC alignment on a large substrate. Therefore, noncontact alignment has been investigated. Ion beam induced alignment method, which provides controllability, nonstop process, and high resolution display. In this study, we investigated liquid crystal (LC) alignment with ion beam (IB) that non contact alignment technique on polyimide and electro-optical characteristics of twisted nematic (TN)-liquid crystal display (LCD) on the poly imide under various ion beam angles. In this experiment, Polyimide layer was coated on glass by spin-coating and Voltage-transmittance(VT) and response time characteristics of the TN cell were measured by a LCD evaluation system. The good characteristics of the nematic liquid crystal (NLC) alignment with the ion beam exposure poly imide surface was observed. The tilt angle of NLC on the PI surface with ion beam exposure can be measured under $1^{\circ}4 for all of irradiation angles. In addition, it can be achieved the good ED properties, and residual DC property of the ion beam aligned TN cell on polyimide surface.

  • PDF

Effect of Low-Energy Electron Irradiation on DNA Damage by Cu2+ Ion

  • Noh, Hyung-Ah;Park, Yeunsoo;Cho, Hyuck
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.1
    • /
    • pp.63-68
    • /
    • 2017
  • Background: The combined effect of the low energy electron (LEE) irradiation and $Cu^{2+}$ ion on DNA damage was investigated. Materials and Methods: Lyophilized pBR322 plasmid DNA films with various concentrations (1-15 mM) of $Cu^{2+}$ ion were independently irradiated by monochromatic LEEs with 5 eV. The types of DNA damage, single strand break (SSB) and double strand break (DSB), were separated and quantified by gel electrophoresis. Results and Discussion: Without electron irradiation, DNA damage was slightly increased with increasing Cu ion concentration via Fenton reaction. LEE-induced DNA damage, with no Cu ion, was only 6.6% via dissociative electron attachment (DEA) process. However, DNA damage was significantly increased through the combined effect of LEE-irradiation and Cu ion, except around 9 mM Cu ion. The possible pathways of DNA damage for each of these different cases were suggested. Conclusion: The combined effect of LEE-irradiation and Cu ion is likely to cause increasing dissociation after elevated transient negative ion state, resulting in the enhanced DNA damage. For the decrease of DNA damage at around 9-mM Cu ion, it is assumed to be related to the structural stabilization due to DNA inter- and intra-crosslinks via Cu ion.

Liquid Crystal Orientation Properties on Homogeneous Polymer Surface by Various Alignment Methods

  • Kim, Young-Hwan;Lee, Kang-Min;Kim, Byoung-Yong;Oh, Byeong-Yun;Han, Jeong-Min;Seo, Dae-Shik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.1
    • /
    • pp.16-19
    • /
    • 2009
  • We have studied the liquid crystal alignment properties for various alignment methods on the homogeneous polyimide surface. Suitable liquid crystal alignment for one-side alignment cell on the polyimide surface by all alignment method was observed. Highly pre-tilt angle of the NLC for both-side rubbing cell was measured. But, low pre-tilt angle of the NLC for one-side ion beam and UV irradiation cell was observed. We consider that the pre-tilt angle of NLC for one-side ion beam and UV irradiation on the PI surface is lower than that of the PI surface with rubbing. Also, the suitable transmittance-voltage curves for the one-side rubbing TN-LCD on the PI surface with one-side UV irradiation were measured. Also, good response time characteristics of the one-side rubbing TN-LCD on the polyimide surface with one-side UV irradiation can be measured.

Influences of the Irradiation of Intense Pulsed ion Beam (IPIB) on the Surface of Ni$_3$Al Base Alloy IC6

  • Le, X.Y.;Yan, S.;Zhao, W.J.;Han, B.H.;Wang, Y.G.;Xue, J.M.;Zhang, H.T.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.6 no.2
    • /
    • pp.92-96
    • /
    • 2002
  • In this paper, we treated the Ni$_3$Al based alloy samples with intense pulsed ion beams (IPIB) at the beam parameters of 250KV acceleration voltage, 100 - 200 A/cm$^2$ current density and 60 u pulse duration. We simulated the thermal-mechanical process near the surface of Ni$_3$Al based alloy with our STEIPIB codes. The surface morphology and the cross-section microstructures of samples were observed with SEM, the composition of the sample surface layer was determined by X-ray Energy Dispersive Spectrometry (XEDS) and the microstructure on the surface was observed by Transmission Electron Microscope (TEM). The results show that heating rate increases with the current density of IPIB and cooling rate reached highest value less than 150 A/cm$^2$. The irradiation of IPIB induced the segregation of Mo and adequate beam parameter can improve anti-oxidation properly of IC6 alloy. Some craters come from extraneous debris and liquid droplets, and some maybe due to the melting of the intersection region of interphase. Increasing the pulse number enlarges average size of craters and decreases number density of craters.

  • PDF

Tilt Angle Generation in NLC on Homeotropic Polymer Surface with Ion Beam Irradiation as a Function of Incident Angle

  • Lee, Sang-Keuk;Seo, Dae-Shik;Choi, Dai-Seub
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.3
    • /
    • pp.120-122
    • /
    • 2008
  • We have studied the tilt angle generation on the homeotropic polyimide (PI) surface using a low intensity ion beam source as a function of incident angle. An excellent LC alignment of nematic liquid crystal (NLC) on the PI surface with ion beam exposure for all incident angles was observed. The tilt angle of NLC on the homeotropic PI surface for all incident angles was from 90 to 88 degree was observed. Also the tilt angle of NLC on the homeotropic PI surface with ion beam exposure of 400 eV had a tendency to increase as ion beam energy incident angle become more instance from 45 degree. Finally, a good LC alignment thermal stability on the homeotropic PI surface with ion beam exposure can be achieved.