Ion-Beam Induced Changes in the Characteristics of Gd Doped Ceria

이온빔 조사에 따른 Gd-doped Ceria의 특성 변화

  • Kim, Tae-Hyung (Department of Nanomaterial Chemistry, Dongguk University) ;
  • Ryu, Boo-Hyung (Department of Safety & Environment Engineering, Dongguk University) ;
  • Lee, In-Ja (Department of Nanomaterial Chemistry, Dongguk University)
  • 김태형 (동국대학교 과학기술대학 나노소재화학과) ;
  • 류부형 (동국대학교 과학기술대학 안전공학과) ;
  • 이인자 (동국대학교 과학기술대학 나노소재화학과)
  • Received : 2010.03.13
  • Accepted : 2010.04.13
  • Published : 2010.08.10

Abstract

The ion-beam induced changes in the characteristics of gadolinium doped ceria (GDC) pellets have been studied by UV-visible spectroscopy (UV-vis), SEM, and XRD. Implanted ions were protons or Xe ions with the energy of 120 keV or 5 MeV. Densely sintered pristine GDC pellets have cubic fluorite structure and are brown in color. As the ion irradiation proceeded, its color gradually turned into light black and finally into dark black. XRD patterns of GDC pellets were closely related with ion energy and the penetration depth of X-ray. It showed that upon the ion irradiation (120 keV) the lattice parameter of the cubic fluorite phase just beneath the surface is increased.

GDC (Gadolinium doped ceria) 펠렛에 120 keV 및 5 MeV 에너지의 양성자 또는 제논 이온을 주입하였으며, 그 영향을 UV-vis 분광계, SEM 및 XRD를 이용하여 측정하였다. GDC 펠렛은 cubic fluorite 구조를 갖는 조밀한 소결체였으며, 갈색이었던 펠렛이 이온빔을 조사한 후 옅은 검은색을 띠기 시작하였으며, fluence가 증가함에 따라 색도 짙어졌다. XRD 패턴은 이온의 에너지 및 X선의 투과 깊이와 밀접한 관계가 있었으며, 120 keV의 양성자 빔을 조사한 표면 바로 아래층은 이온의 주입으로 결정 구조는 유지한 채 격자 상수가 증가하였다는 것을 관찰하였다.

Keywords

References

  1. J. Hyun, The Development of MEMS Device Packaging Technology using Proton Beam, Proton Engineering Frontier Project, Development and management of proton accelerator user program (2006).
  2. P.-P. Wang, Y.-L. Zhou, S.-H. Pan, H. Zhang, X.-X. Guo, X.-M. Xiong, H.-B. Lu, Z.-H. Zhen, and G.-Z. Yang, J. Appl. Phys., 84, 1994 (1998). https://doi.org/10.1063/1.368333
  3. S. Yamazaki, T. Matsui, T. Sato, Y. Arita, and T. Nagasaki, Solid State Ionic, 113, 154 (2002).
  4. N. Q. Minh and T. Takahashi, Science, and Technology of Ceramic Fuel Cells, 92, Elsevier Science, Amsterdam (1996).
  5. N. Q. Minh, J. Am. Ceram. Soc., 76, 563 (1993). https://doi.org/10.1111/j.1151-2916.1993.tb03645.x
  6. N. Q. Minh, Chemtech., 21, 120 (1991).
  7. T. Hibino, Science, 288, 2031 (2000). https://doi.org/10.1126/science.288.5473.2031
  8. S. C. Singhal and K. Kendall, High Temperature Solid Oxide Fuel cell, eds. T. Ishihara, N. M Sammes, and O. Yamamoto, ch. 4, Elsevier (2002).
  9. J. F. Ziegler and J. M. Manoyan, Nucl. Instr. and Meth. In Phys. Res. B, 35, 215 (1988), Computer program and additional information are available at http://www.srim.org. https://doi.org/10.1016/0168-583X(88)90273-X