• Title/Summary/Keyword: Ion-Exchangers

Search Result 45, Processing Time 0.025 seconds

Adsorption Properties of Nickel ion from Plating Rinse Water Using Hybrid Sulfonated Bead and Fibrous Ion Exchanger (설폰산형 비드와 섬유 혼성체를 이용한 도금수세수 중의 니켈 흡착 특성)

  • 황택성;조상연
    • Polymer(Korea)
    • /
    • v.27 no.1
    • /
    • pp.61-68
    • /
    • 2003
  • In this study, we have investigated the preparation of mixed bead and fiber type hybrid ion-exchanger for recovering nickel ion from plating rinse water. There was little dependence of adsorption capacity for nickel ion on the mixing ratio of resin type and fiber type of ion exchangers. However, it increased with increasing the resin content in the mixed bed. It was shown that the data Langmuir and Freundlich's adsorption isotherm model were well fitted to the linear. Affinity between the functional groups in the ion exchanger and nickel ion in the process was confirmed. The pressure drop decreased with increasing the number of stage in the multistage bed, but it increased with increasing the resin content in the mixing bed. The initial breakthrough time in the multistage bed was short due to the increase of number of stage in the continuous process. It was found that the final breakthrough time of the multistage bed was little changed. The breakthrough time decreased with increasing the amount of fibrous ion exchanger in the mixed bed. The maximum adsorption capacities of the mixed and multistage beds were 2.51 meq/g and 2.69 meq/g, respectively. The desorption time for the nickel ion with $1N H_2SO_4$ solution was lower than 10 minutes and the yield of desorption was greater than 98 percent.

Consensus channelome of dinoflagellates revealed by transcriptomic analysis sheds light on their physiology

  • Pozdnyakov, Ilya;Matantseva, Olga;Skarlato, Sergei
    • ALGAE
    • /
    • v.36 no.4
    • /
    • pp.315-326
    • /
    • 2021
  • Ion channels are membrane protein complexes mediating passive ion flux across the cell membranes. Every organism has a certain set of ion channels that define its physiology. Dinoflagellates are ecologically important microorganisms characterized by effective physiological adaptability, which backs up their massive proliferations that often result in harmful blooms (red tides). In this study, we used a bioinformatics approach to identify homologs of known ion channels that belong to 36 ion channel families. We demonstrated that the versatility of the dinoflagellate physiology is underpinned by a high diversity of ion channels including homologs of animal and plant proteins, as well as channels unique to protists. The analysis of 27 transcriptomes allowed reconstructing a consensus ion channel repertoire (channelome) of dinoflagellates including the members of 31 ion channel families: inwardly-rectifying potassium channels, two-pore domain potassium channels, voltage-gated potassium channels (Kv), tandem Kv, cyclic nucleotide-binding domain-containing channels (CNBD), tandem CNBD, eukaryotic ionotropic glutamate receptors, large-conductance calcium-activated potassium channels, intermediate/small-conductance calcium-activated potassium channels, eukaryotic single-domain voltage-gated cation channels, transient receptor potential channels, two-pore domain calcium channels, four-domain voltage-gated cation channels, cation and anion Cys-loop receptors, small-conductivity mechanosensitive channels, large-conductivity mechanosensitive channels, voltage-gated proton channels, inositole-1,4,5-trisphosphate receptors, slow anion channels, aluminum-activated malate transporters and quick anion channels, mitochondrial calcium uniporters, voltage-dependent anion channels, vesicular chloride channels, ionotropic purinergic receptors, animal volage-insensitive cation channels, channelrhodopsins, bestrophins, voltage-gated chloride channels H+/Cl- exchangers, plant calcium-permeable mechanosensitive channels, and trimeric intracellular cation channels. Overall, dinoflagellates represent cells able to respond to physical and chemical stimuli utilizing a wide range of G-protein coupled receptors- and Ca2+-dependent signaling pathways. The applied approach not only shed light on the ion channel set in dinoflagellates, but also provided the information on possible molecular mechanisms underlying vital cellular processes dependent on the ion transport.

The Phosphorus Removal from Water by Zirconium Mesoporous Structure (지르코늄 메조기공 구조체를 이용한 수중의 인 제거)

  • Lee, Byoung-cheun;Lee, Kwan-yong;Lee, Sang-hyup;Choi, Yong-su;Park, Ki-young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.4
    • /
    • pp.455-461
    • /
    • 2005
  • This study was designed to investigate the fundamental aspects of a possible recovery of phosphorus strategy from wastewater by using the zirconium mesoporous structured materials as a new type of ion exchangers. Zirconium mesoporous structure material was synthesized by hydro-thermal synthesis. The synthesized zirconium mesoporous structure was examined by X-ray diffraction (XRD) and Transmission electron micrograph (TEM). From the results of XRD and TEM, it was found out that hexagonal mesoporous structure, pore size was about $47{\AA}$, was synthesized. Experimental results showed that the complex of zirconium sulfate tetrahydrate and surfactant micelles had very high ability for capture of phosphorus. The amount of phosphate ions exchanged into the solid was as great as 3.4mmol/g-ZS. And the ion exchange reaction was occurred between $PO_4{^{3-}}$ and $SO_4{^{2-}}$ and also between $PO_4{^{3-}}$ and $OH^-$. Therefore, it is possible to get the higher removal efficiency than other ion exchange media and adsorbent.

Effect on Corrosion Characteristics of SS 400 Steel by Alkali Water pH from Electrolysis of City Water (수돗물의 전기분해에 의해서 생성된 알카리수의 pH가 SS 400강의 부식특성에 미치는 영향)

  • Moon, Kyung-Man;Ryoo, Hae-Jeon;Kim, Yun-Hae;Jeong, Jae-Hyun;Baek, Tae-Sil
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.248-255
    • /
    • 2017
  • Many rivers and seas have been affected by environmental contamination. Therefore, city water supplies often require a high-degree purification treatment to provide safe drinking water. However, in order to achieve a high-degree purification treatment, a large amount of chlorine has to be added to sterilize city drinking water. The added chlorine reacts chemically with water and forms hypochlorous and chlorine ions. The hypochlorous ionizes with hypochlorous ions and hydrogen ions. As a result, the city water contains a large amount of chlorine ion. As such, when city water is used with domestic boilers, many kinds of heat exchangers, and the engines of vehicle and ships, there are often corrosion problems. In this study, alkali water was electrochemically made by electrolysis of city water, and corrosion properties between alkali and city water were investigated with an electrochemical method. Most of the chlorine ions are thought to not be contained in the alkali water because the alkali water is created in the cathodic chamber with an electrolysis process. In other words, the chlorine ion can be mostly removed by its migration from a cathodic chamber to an anodic chamber. Moreover, the alkali water also contains a large amount of hydroxide ion. The alkali water indicated relatively good corrosion resistance compared to the city water and the city water exhibited a local corrosion pattern due to the chlorine ion created by a high-degree purification treatment. In contrast, the alkali water showed a general corrosion pattern. Consequently, alkali water can be used with cooling water to inhibit local corrosion by chlorine ions in domestic boilers, various heat exchangers and the engine of ships and for structural steel in a marine structure.

Cesium removal in water using magnetic materials ; A review (자성체 물질을 이용한 수중의 세슘제거 동향)

  • Yeo, Wooseok;Cho, Byungrae;Kim, Jong Kyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.6
    • /
    • pp.395-408
    • /
    • 2018
  • Even after the Fukushima nuclear accident in 2011, the rate of production of electric energy using nuclear energy is increasing, but there is a great danger such as the radioactive waste produced when using nuclear power, the catastrophic accident of nuclear power plant, and connection with nuclear weapons. In particular, Cs present in the ionic form of alkaline elements has a long half-life (30.17 years) because it is readily absorbed by the organism and emits intense gamma rays, thus presenting a serious radiation hazard. Therefore, it must be completely removed before it can be released into the natural ecosystem, because it can adversely affect not only humans but also natural ecosystems. Many adsorbents and ion exchangers which have high Cs removal efficiency have been used in recent years to completely separate and remove by self separation in water. Many adsorbents and ion exchangers which have high Cs removal efficiency have been used in recent years to completely separate and remove by self separation in water. In addition, researches have been doing to synthesize magnetic materials with adsorbents such as HCF and PB, and it shows a great effect in the removal rate of Cs present in wastewater or the maximum Cs adsorption amount. In particular, when a magnetic material was applied, excellent results were obtained in which only Cs was selectively removed from other cations. However, new problems such as applicability in the sea where Cs is directly released, applicability in various pH ranges, and failure to preserve the magnetizing force possessed by the magnetic body have been found. However, researches using ferromagnetic field with stronger magnetic properties than those of magnetic bodies is considered to be insufficient. Therefore, it is considered that if the researches combining the ferromagnetic field with the magnetization ability and functional adsorbents more actively, the radioactive material Cs which adversely affects the natural ecosystem can be effectively removed.

Synthesis of Multifunctional AN-co-(MMA/IA) Fibrous ion-exchanger by Hydrolysis and Adsorption Properties for Trace Transition Elements (가수분해에 의한 AN-co-(MMA(IA) 다관능성 섬유이온교환체의 합성 및 미랑 전이금속 흡착특성)

  • 황택성;이선아;황계순
    • Polymer(Korea)
    • /
    • v.25 no.6
    • /
    • pp.765-773
    • /
    • 2001
  • In In order to remove harmful trace elements such as $Co^{2+}$, $Ni^{2+}$ , $Cr_2O_7\;^{2-}$ from water, we synthesized AN-co-(MMA/IA) according to various mole ratio of monomers and spun by wet-spinning. And multi-functional PAN ion exchangers were prepared by hydrolysis. We observed structure, degree of functionalization, ion exchange capacity, distribution coefficient and mechanical properties for ion exchanger. Anion exchange capacity decreased in 4.5 ~ 4.2 meq/g with increasing of IA content and cation exchange capacity increased in 1.8 ~ 2.2 meq/g. Tensile strength of the ion exchanger increased up to 0.008 mol% IA content and appeared maximum value by 216$kg/cm^2$Distribution coefficient for AN-co-(MMA/IA) ion exchanger appeared maximum value for Co(II), Ni(II) in pH 5-6 range and for Cr(III) in pH 3-4 range. And the adsorption capacity was in the order of Cr(III) > Co(II) > Ni(II) for multicomponent in continuous process.

  • PDF

Synthesis of Multifunctional Polypropylene-g-(acrylic acid/styrene) Fibrous Ion Exchanger by Electron Beam and Adsorption Properties of Lithum Ion (전자선 조사에 의한 다관능 Polypropylene-g-(acrylic acid/styrene) 섬유상 이온교환체의 합성과 리튬이온 흡착특성)

  • 황택성;박진원;이재천
    • Polymer(Korea)
    • /
    • v.24 no.6
    • /
    • pp.763-769
    • /
    • 2000
  • The multifunctional cation exchangers, sulfonated polypropylene-g-(acrylic acid/styrene) [PP-g-(AAc/Sty)] were synthesized by the irradiational grafting of AAc and Sty onto PP staple fabric with electron beam accelerator and its subsequent sulfonation. The highest degree of grafting obtained was 190% at a monomer mixture of 30 vol% AAc: 70 vol% Sty and a solvent mixture of 30 vol% water : 70 vol% methanol and the degree of grafting decreased with an increase of the AAc content in the monomer mixture at constant solvent content. Maximum ion exchange capacity of the copolymer was 4.6 meq/g. The Li$^{+}$ adsorption ability of the copolymer synthesized in the study was the best among PP-g- AAc, sulfonated PP-g-Sty, and sulfonated PP-g-(AAc/Sty).).

  • PDF

Role of Stretch-Activated Channels in Stretch-Induced Changes of Electrical Activity in Rat Atrial Myocytes

  • Youm, Jae-Boum;Jo, Su-Hyun;Leem, Chae-Hun;Ho, Won-Kyung;Earm, Yung E.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.1
    • /
    • pp.33-41
    • /
    • 2004
  • We developed a cardiac cell model to explain the phenomenon of mechano-electric feedback (MEF), based on the experimental data with rat atrial myocytes. It incorporated the activity of ion channels, pumps, exchangers, and changes of intracellular ion concentration. Changes in membrane excitability and $Ca^{2+}$ transients could then be calculated. In the model, the major ion channels responsible for the stretch-induced changes in electrical activity were the stretch-activated channels (SACs). The relationship between the extent of stretch and activation of SACs was formulated based on the experimental findings. Then, the effects of mechanical stretch on the electrical activity were reproduced. The shape of the action potential (AP) was significantly changed by stretch in the model simulation. The duration was decreased at initial fast phase of repolarization (AP duration at 20% repolarization level from 3.7 to 2.5 ms) and increased at late slow phase of repolarization (AP duration at 90% repolarization level from 62 to 178 ms). The resting potential was depolarized from -75 to -61 mV. This mathematical model of SACs may quantitatively predict changes in cardiomyocytes by mechanical stretch.

Reuses Of Wash Water Effluents Of The Ion-Exchanger Units Of Water Demineralization Plant For Economic And Environmental Benefits

  • Miah, Raisuddin
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.799-806
    • /
    • 1995
  • In industrial field, a large volume of regenerants (acid and caustic soda) and their washing effluents are regularly disposed off from the water demineralization plant during regeneration of the ion-exchanger units. Of these waste effluents, a part of the wash water discharged from the single bed Anion and Mixed Bed units can be utilized at a certain stage of their washing cycles when its conductivity is fallen down and becomes considerably less than that of the input raw water. The main aim of this specific waste effluent utilization is to dilute the TDS concentration of the input raw water (fed into the single bed ion-exchanger units) by blending. The achievement is the increase of the longevity of the production cycles of the I.E. units along with the improvement of the production quality and decrease of the regeneration frequencies. As a result, regenerant consumption would be saved because of the reduction of ionic load in feed water which will ultimately reduce the water purification cost. At the same time, the environment pollution will also be protected to a considerable extent. This operational measure is quite effective and useful specially where high TDS water is demineralized only by single bed ion-exchangers. In such case, the water treatment plant is very often found to suffer from both production quality and quantity in addition to carrying out of random and restless regenerations. Proper reuses of the aforesaid wash water effluents of the Anion and MB units excellently minimizes the difficulties experienced in practice. This paper contains the utilities and techniques of reuses of the different kinds of waste effluents of the industrial water treatment plant in addition to the specific reuses of the post-regeneration wash waters of the Anion and MB ion-exchanger units.

  • PDF

Synthesis of SAPP-g-(AN/St) Fibrous Ion-Exchanger by E-beam Pre-irradiation and Their Adsorption Properties for Uranium Ion (E-beam 전조사법에 의한 SAPP-g-(AN/St) 섬유상 이온교환체의 합성 및 우라늄 흡착특성)

  • Hwang, Taek-Sung;Park, Jin-Won;Kim, Kwang-Young
    • Polymer(Korea)
    • /
    • v.25 no.1
    • /
    • pp.49-55
    • /
    • 2001
  • The bi-functional ion exchangers, SAPP-g-(AN/St) were synthesized with mixed vinyl monomers(acrylonitrile and styrene) onto PP fabric by the pre-irradiation grafting with E-beam and its subsequent amidoximination and sulfonation. The degree of grafting of PP-g-(AN/St) was increased with decreasing acrylonitrile composition in the mixed monomers. The water uptake of copolymers increased with decreasing in the amidoxime ratio in the copolymers and increased by sulfonation, but decreased by amidoximation. The $UO_2^{2+}$ adsorption capacity of SPP-g-St, APP-g-AN, and SAPP-g-(AN/St) were 12.4, 34.0, and 38.0 mg/g, respectively and the optimum adsorption time is about 50 hrs. As a result of uranium adsorption, the synthesized ion exchanger, which we obtained have also good affinity toward the adsorption or chelating with $UO_2^{2+}$ ions.

  • PDF