• 제목/요약/키워드: Ion electrical mobility

검색결과 76건 처리시간 0.025초

Effect of Annealing under Antimony Ambient on Structural Recovery of Plasma-damaged InSb(100) Surface

  • 석철균;최민경;정진욱;박세훈;박용조;양인상;윤의준
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.203-203
    • /
    • 2014
  • Due to the electrical properties such as narrow bandgap and high carrier mobility, indium antimonide (InSb) has attracted a lot of attention recently. For the fabrication of electronic or photonic devices, an etching process is required. However, during etching process, enegetic ions can induce structural damages on the bombarded surface. Especially, InSb has a very weak binding energy between In atom and Sb stom, it can be easily damaged by impingement of ions. In the previous work, to evaluate the surface properties after Ar ion beam etching, the plasma-induced structural damage on the etched InSb(100) surface had been examined by resonant Raman spectroscopy. As a result, we demonstrated the relation between the enhanced transverse optical(TO) peak in the Raman spectrum and the ion-induced structral damage near the InSb surface. In this work, the annealing effect on the etched InSb(100) surface has investigated. Annealing process was performed at $450^{\circ}C$ for 10 minute under antimony ambient. As-etched InSb(100) surface had shown a strongly enhanced TO scattering intensity in the Raman spectrum. However, the annealing process with antimony flowing caused the intensity to recover due to the structural reordering and the reduction of antimony vacancies. It proves that the origin of enhanced TO scattering is Sb vacancies. Furthermore, it shows that etching-induced damage can be cured effectively by the following annealing process under Sb ambient.

  • PDF

활성화 및 에어로졸 공정에 의한 다공성 그래핀 볼 제조 및 슈퍼커패시터 응용 (Synthesis of Porous Graphene Balls by the Activation and Aerosol Process for Supercapacitors Application)

  • 이총민;장한권;장희동
    • 한국입자에어로졸학회지
    • /
    • 제15권4호
    • /
    • pp.183-190
    • /
    • 2019
  • Here, we introduce porous graphene balls (PGB) showing superior electrochemical properties as supercapacitor electrode materials. PGB was fabricated via activation of graphene oxides (GO) by H2O2 and aerosol spray drying in series. Effect of activation on the morphology, specific surface area, pore volume, and electrochemical properties were investigated. As-prepared PGB showed spherical morphology containing pores, which lead to the effective prevention of restacking in graphene sheets. It also exhibited a large surface area, unique porous structures, and high electrical conductivity. The electrochemical properties of the PGB as electrode materials of supercapacitor are investigated by using aqueous KOH under symmetric two-electrode system. The highest specific capacitance of PGB was 279 F/g at 0.1 A/g. In addition, the high rate capability (93.8% retention) and long-term cycling stability (92.2%) of the PGB were found due to the facilitated ion mobility between the porous graphene layers.

Proton Conductivity of Niobium Phosphate Glass Thin Films

  • Kim, Dae Ho;Park, Sung Bum;Park, Yong-il
    • 한국재료학회지
    • /
    • 제28권5호
    • /
    • pp.308-314
    • /
    • 2018
  • Among the fuel cell electrolyte candidates in the intermediate temperature range, glass materials show stable physical properties and are also expected to have higher ion conductivity than crystalline materials. In particular, phosphate glass has a high mobility of protons since such a structure maintains a hydrogen bond network that leads to high proton conductivity. Recently, defects like volatilization of phosphorus and destruction of the bonding structure have remarkably improved with introduction of cations, such as Zr4+ and Nb5+, into phosphate. In particular, niobium has proton conductivity on the surface because of higher surface acidity. It can also retain phosphorus content during heat treatment and improve chemical stability by bonding with phosphorus. In this study, we fabricate niobium phosphate glass thin films through sol-gel processing, and we report the chemical stability and electrical properties. The existence of the hydroxyl group in the phosphate is confirmed and found to be preserved at the intermediate temperature region of $150-450^{\circ}C$.

TCO 응용을 위한 패턴된 기판위에 증착된 AZO 박막의 특성 연구 (Conformal coating of Al-doped ZnO thin film on micro-column patterned substrate for TCO)

  • 최미경;안철현;공보현;조형균
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.28-28
    • /
    • 2009
  • Fabrications of antireflection structures on solar cell were investigated to trap the light and to improve quantum efficiency. Introductions of patterned substrate or textured layer for Si solar cell were performed to prevent reflectance and to increase the path length of incoming light. However, it is difficult to deposit conformally flat electrode on perpendicular plane. ZnO is II-VI compound semiconductor and well-known wide band-gap material. It has similar electrical and optical properties as ITO, but it is nontoxic and stable. In this study, Al-doped ZnO thin films are deposited as transparent electrode by atomic layer deposition method to coat on Si substrate with micro-scale structures. The deposited AZO layer is flatted on horizontal plane as well as perpendicular one with conformal 200 nm thickness. The carrier concentration, mobility and resistivity of deposited AZO thin film on glass substrate were measured $1.4\times10^{20}cm^{-3}$, $93.3cm^2/Vs$, $4.732\times10^{-4}{\Omega}cm$ with high transmittance over 80%. The AZO films were coated with polyimide and performed selective polyimide stripping on head of column by reactive ion etching to measure resistance along columns surface. Current between the micro-columns flows onto the perpendicular plane of deposited AZO film with low resistance.

  • PDF

사질토양에서의 중금속의 지연효과와 이동성 (Retardation Effect and Mobility of a Heavy Metal in a Sandy Soil)

  • Kim, Dong-Ju;Baek, Doo-Sung
    • 대한지하수환경학회지
    • /
    • 제5권3호
    • /
    • pp.155-161
    • /
    • 1998
  • 토립자 표면에서의 흡착에 의한 토양에서의 중금속의 지연효과는 잘 알려진 현상이다. 본 연구에서는 배치시험과 주상시험을 수행함으로써 사질 토양에서 Zn의 이동성에 대한 지연효과를 조사하였다. 주상시험은 파과곡선(BTC)으로 알려진 시간에 따른 용액의 농도를 측정함으로써 수행되었다. 추적자로는 10 g/L 농도의 NaCl과 ZnCl$_2$를 사용하였고, 각각의 용액을 토양시료의 상부경계에 순간주입한 후 정상류 상태에서 배출구로 빠져나온 용탈수의 농도를 EC-meter와 ICP-AES를 이용하여 측정하였다. 배치시험은 표준절차에 근거하여 이루어졌으며, 토양시료로부터 선별된 미세입자들을 다양한 초기농도의 ZnCl$_2$용액과 반응시켜 평형상태의 Zn 이온의 농도를 ICP를 이용하여 분석하였다. 주상시험의 결과는 i) ICP-AES에 의해 분석된 ZnCl$_2$의 첨두농도는 NaCl이나 총전기전도도로부터 구한 값보다 상당히 낮았고, ii) 두 종류의 추적자 모두 첨두농도의 도달시간은 상당히 일치하였다. 상대적으로 낮은 Zn의 농도는 Zn과 다른 양이온들간의 이온교환반응이 일어났고, 용탈수의 pH가 높은 값의 범위(7.0~7.9)에 있는 것으로 보아 Zn(OH)$_2$의 형태로 침전되었을 가능성이 있다는 것으로 설명될 수 있다. 첨두농도의 도달시간이 일치한다는 결과는 토양시료에서 지연효과가 일어나지 않았다는 것을 지시한다. Zn 이온의 뚜렷한 감소를 설명할 수 있는 유일한 방법은 CDE 모델에 용액상태에서 Zn 이온의 절대적 감소를 고려하는 감쇄계수(decay or sink coefficient)를 적용하는 것이었다.

  • PDF

전계 펄스 인가 증발 방법을 이용한 그라핀의 특성 연구 (Characteristics of graphene sheets synthesized by the Thermo-electrical Pulse Induced Evaporation)

  • 박혜윤;김현욱;송창은;지현준;최시경
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.412-412
    • /
    • 2009
  • Carbon-based nano materials have a significant effect on various fields such as physics, chemistry and material science. Therefore carbon nano materials have been investigated by many scientists and engineers. Especially, since graphene, 2-dimemsonal carbon nanostructure, was experimentally discovered graphene has been tremendously attracted by both theoretical and experimental groups due to their extraordinary electrical, chemical and mechanical properties. Electrical conductivity of graphene is about ten times to that of silicon-based material and independent of temperature. At the same time silicon-based semiconductors encountered to limitation in size reduction, graphene is a strong candidate substituting for silicon-based semiconductor. But there are many limitations on fabricating large-scale graphene sheets (GS) without any defect and controlling chirality of edges. Many scientists applied micromechanical cleavage method from graphite and a SiC decomposition method to the fabrication of GS. However these methods are on the basic stage and have many drawbacks. Thereupon, our group fabricated GS through Thermo-electrical Pulse Induced Evaporation (TPIE) motivated by arc-discharge and field ion microscopy. This method is based on interaction of electrical pulse evaporation and thermal evaporation and is useful to produce not only graphene but also various carbon-based nanostructures with feeble pulse and at low temperature. On fabricating GS procedure, we could recognize distinguishable conditions (electrical pulse, temperature, etc.) to form a variety of carbon nanostructures. In this presentation, we will show the structural properties of OS by synthesized TPIE. Transmission Electron Microscopy (TEM) and Optical Microscopy (OM) observations were performed to view structural characteristics such as crystallinity. Moreover, we confirmed number of layers of GS by Atomic Force Microscopy (AFM) and Raman spectroscopy. Also, we used a probe station, in order to measure the electrical properties such as sheet resistance, resistivity, mobility of OS. We believe our method (TPIE) is a powerful bottom-up approach to synthesize and modify carbon-based nanostructures.

  • PDF

$Ru^{+3}$, $Pt^{+4}$로 표면 처리한 GaSb의 결정 성장과 특성 (Study on the Crystal Growth and Characterization of GaSb treated with $Ru^{+3}$, $Pt^{+4}$)

  • 이재구;오장섭;송복식;정성훈;문동찬;김선태
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1995년도 추계학술대회 논문집
    • /
    • pp.77-80
    • /
    • 1995
  • GaSb crystals were grown by the vertical Bridgman method. P-type GaSb crystals were grown with Ga:Sb=1:1 at % ratio without dopants and with Te, respectively. Also, GaSb:Te crystals were investigated. Lattice constants were 6.117${\AA}$ for p-type. The carrier concentration, the resistivity, and the carrier mobility measured by the van der Pauw method were p≡8 x $10^{16}$$cm^{-3}$, p≡0.20$\Omega$-cm, ${\mu}$$_{n}$$400\textrm{cm}^2$$V^{-1}$$sec^{-1}$ for p-type, n≡1 x $10^{17}$$cm^{-3}$, p≡0.15 $\Omega$-cm, ${\mu}$$_{n}$$500\textrm{cm}^2$$V^{-1}$$sec^{-1}$ for n-type at 300K. In case of treating with metal ion of $Ru^{+3}$, $Pt^{+1}$, p≡2 x $10^{17}$$cm^{-3}$, p≡0.08$\Omega$-cm, ${\mu}$$_{n}$≡420$\textrm{cm}^2$$V^{-1}$$sec^{-1}$ for p-type, n≡2.5 x $10^{17}$$cm^{-13}$, p≡0.07 $\Omega$-cm, ${\mu}$$_{n}$≡520$\textrm{cm}^2$$V^{-1}$$sec^{-1}$ for n-type were obtained.

  • PDF

펄스형 진공 아크법에 의한 ZnO 박막의 상온합성 및 이의 전기적 특성에 미치는 산소분압비의 영향 (Room-Temperature Deposition of ZnO Thin Film by Pulsed Vacuum Arc and Effect of Oxygen Gas Ratio on Its Electrical Properties)

  • 신민근;변응선;이성훈;김도근;전상조;구본흔
    • 한국표면공학회지
    • /
    • 제38권5호
    • /
    • pp.193-197
    • /
    • 2005
  • Highly c-axis oriented Zinc oxide (ZnO) films were successfully deposited at room temperature by oxygen ion-assisted pulsed filtered vacuum arc. The effect of oxygen gas ratio ($O_{2}/O_{2}+Ar$ on the preferred orientation, surface morphology and resistivity of the ZnO films were investigated. Highly crystalline ZnO films with (002) orientation were obtained at over $13\%$ of oxygen gas ratio. Increasing oxygen gas ratio up to $80\%$ was found to improve crystallinity of the films. From hall measurements, it was found that the film has n-type characteristic and carrier concentration and its mobility were closely related with oxygen gas ratio. Minimal resistivity of $3.6{\times}10^{-3}{\Omega}{\cdot}cm$ was obtained in the range of $20\%$ to $40\%$ of oxygen gas ratio.

Diffusion Behaviors and Electrical Properties in the In-Ga-Zn-O Thin Film Deposited by Radio-frequency Reactive Magnetron Sputtering

  • Lee, Seok Ryeol;Choi, Jae Ha;Lee, Ho Seong
    • 한국표면공학회지
    • /
    • 제48권6호
    • /
    • pp.322-328
    • /
    • 2015
  • We investigated the diffusion behaviors, electrical properties, microstructures, and composition of In-Ga-Zn-O (IGZO) oxide thin films deposited by radio frequency reactive magnetron sputtering with increasing annealing temperatures. The samples were deposited at room temperature and then annealed at 300, 400, 500, 600 and $700^{\circ}C$ in air ambient for 2 h. According to the results of time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy, no diffusion of In, Ga, and Zn components were observed at 300, 400, 500, $600^{\circ}C$, but there was a diffusion at $700^{\circ}C$. However, for the sample annealed at $700^{\circ}C$, considerable diffusion occurred. Especially, the concentration of In and Ga components were similar at the IGZO thin film but were decreased near the interface between the IGZO and glass substrate, while the concentration of Zn was decreased at the IGZO thin film and some Zn were partially diffused into the glass substrate. The high-resolution transmission electron microscopy results showed that a phase change at the interface between IGZO film and glass substrate began to occur at $500^{\circ}C$ and an unidentified crystalline phase was observed at the interface between IGZO film and glass substrate due to a rapid change in composition of In, Ga and Zn at $700^{\circ}C$. The best values of electron mobility of $15.5cm^2/V{\cdot}s$ and resistivity of $0.21{\Omega}cm$ were obtained from the sample annealed at $600^{\circ}C$.

4H-SiC와 산화막 계면에 대한 혼합된 일산화질소 가스를 이용한 산화 후속 열처리 효과 (Effect of High-Temperature Post-Oxidation Annealing in Diluted Nitric Oxide Gas on the SiO2/4H-SiC Interface)

  • 김인규;문정현
    • 한국전기전자재료학회논문지
    • /
    • 제37권1호
    • /
    • pp.101-105
    • /
    • 2024
  • 4H-SiC power metal-oxide-semiconductor field effect transistors (MOSFETs) have been developed to achieve lower specific-on-resistance (Ron,sp), and the gate oxides have been thermally grown. The poor channel mobility resulting from the high interface trap density (Dit) at the SiO2/4H-SiC interface significantly affects the higher switching loss of the power device. Therefore, the development of novel fabrication processes to enhance the quality of the SiO2/4H-SiC interface is required. In this paper, NO post-oxidation annealing (POA) by using the conditions of N2 diluted NO at a high temperature (1,300℃) is proposed to reduce the high interface trap density resulting from thermal oxidation. The NO POA is carried out in various NO ambient (0, 10, 50, and 100% NO mixed with 100, 90, 50, and 0% of high purity N2 gas to achieve the optimized condition while maintaining a high temperature (1,300℃). To confirm the optimized condition of the NO POA, measuring capacitance-voltage (C-V) and current-voltage (I-V), and time-of-flight secondary-ion mass spectrometry (ToF-SIMS) are employed. It is confirmed that the POA condition of 50% NO at 1,300℃ facilitates the equilibrium state of both the oxidation and nitridation at the SiO2/4H-SiC interface, thereby reducing the Dit.