Browse > Article
http://dx.doi.org/10.3740/MRSK.2018.28.5.308

Proton Conductivity of Niobium Phosphate Glass Thin Films  

Kim, Dae Ho (Department of Advanced Engineering, Kumoh National Institute of Technology)
Park, Sung Bum (Department of Advanced Engineering, Kumoh National Institute of Technology)
Park, Yong-il (Department of Advanced Engineering, Kumoh National Institute of Technology)
Publication Information
Korean Journal of Materials Research / v.28, no.5, 2018 , pp. 308-314 More about this Journal
Abstract
Among the fuel cell electrolyte candidates in the intermediate temperature range, glass materials show stable physical properties and are also expected to have higher ion conductivity than crystalline materials. In particular, phosphate glass has a high mobility of protons since such a structure maintains a hydrogen bond network that leads to high proton conductivity. Recently, defects like volatilization of phosphorus and destruction of the bonding structure have remarkably improved with introduction of cations, such as Zr4+ and Nb5+, into phosphate. In particular, niobium has proton conductivity on the surface because of higher surface acidity. It can also retain phosphorus content during heat treatment and improve chemical stability by bonding with phosphorus. In this study, we fabricate niobium phosphate glass thin films through sol-gel processing, and we report the chemical stability and electrical properties. The existence of the hydroxyl group in the phosphate is confirmed and found to be preserved at the intermediate temperature region of $150-450^{\circ}C$.
Keywords
niobium phosphate glass; proton conductivity; fuel cells;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Donze, L. Montagne, J. Grimblot, L. Gengembre, and G. Palavit, Phosphorus Research Bulletin, 10, 509 (1999).   DOI
2 Brian C. H. Steele, and Angelika Heinzel, Nature., 414, 345 (2001).   DOI
3 K.-D. Kreuer, Chem. Mater., 8, 610 (1996).   DOI
4 P. Heo, K. Ito, A. Tomita, and T. Hibino, Angew. Chem. Int. Ed., 47, 7841 (2008).   DOI
5 S. M. Haile, C. R. I. Chisholm, K. Sasaki, D. A. Boysen, and T. Uda, Faraday Discuss., 134, 17 (2007).   DOI
6 T. Norby, Solid State Ionics, 125, 1 (1999).   DOI
7 Y. Abe, H. Hosono, and Y. Ohta, Phys. Rev. B: Condens. Matter Mater. Phys., 38, 10166 (1988).   DOI
8 S. W. Martin, J. Am. Ceram. Soc., 74, 1767 (1991).   DOI
9 J. E. Pemberton and L. Latifzadeh, Chem. Mater., 3, 195 (1991).   DOI
10 F. F. Sene, J. R. Martinelli, and L. Gomes, J. Non-Cryst. Solids, 48, 30 (2004).
11 F. F. Sene, K. R. Martinelli, and L. Gomes, J. Non-Cryst. Solids, 348, 63 (2004).   DOI
12 S. V. Raman, J. Non-Cryst. Solids, 263&264, 395 (2000).
13 Y. Abe, H. Shimakawa, and L. L Hench, J. Non-Cryst. Solids, 51, 357 (1982).   DOI
14 Y. Abe, G. Li, M. Nogami, T. Kasuga, and L. L. Hench, J. Electrochem. Soc., 143, 144 (1996).   DOI
15 T. Kasuga, M. Nakano, and M. Nogami, Adv. Mater., 14, 1490 (2002).   DOI
16 K. Makita, M. Nogami, and Y. Abe, J. Mater. Sci. Lett., 16, 550 (1997).   DOI
17 S. H. Lee, Master Thesis (in Korean), p.35, Kumoh National Institute of Technology, Gumi, Korea (2013).
18 J.-E. Kim, S. B. Park and Y.-I. Park, J. Solid State Ionics, 216, 15 (2012).   DOI
19 M. Nogami, K. Miyamura, and Y. Abe, J. Electro. Soc., 144, 2175 (1997).   DOI
20 I. Nowak and M. Ziolek, Chem. Rev., 99, 2603 (1999).
21 A. E. Jazouli, J. C. Viala, C. Parent, G. L. Flem, and P. Hagenmuller, J. Solid State Chem., 73, 433 (1988).   DOI
22 A. E. Jazouli, R. Brochu, J. C. Viala, R. Ohazacuaga, C. Delmas, and G. L. Flem, Ann. Chim. (Cachan, Fr.), 7, 285 (1982).
23 M. I. Abd El-Ati and A. A. Higazy, J. Mater. Sci., 35, 6175 (2000).   DOI
24 W. storek, C. Peuker, and H. Geissler, J. Glass Sicence and Technology, 73, 373 (2000).
25 E. N. Boulos and N. J. Kreidl: J. Can. Ceram. Soc., 41, 83 (1972).
26 M. Aparicio and L.C. Klein, J. Sol-Gel Sci. Technol., 28, 199 (2003).   DOI
27 B. C. Lee, Y. J. Kwon, and B. K. Ryu, J. Korean Ceram. Soc., 39, 265 (2002).   DOI
28 V. Ramani, H. R. Kunz, and J. M. Fenton, J. Membr. Sci., 232, 31 (2004).   DOI
29 M. Kotama, K. Nakanishi, H. Hosono, Y. Abe, and L. L. Hench, J. Electrochem. Soc., 138, 2928 (1991).   DOI
30 Y. Abe, H. Hosono, O. Akita, and L. L. Hench J. Electro- chem. Soc., 141, L64 (1994).   DOI
31 T. Uma and M. Nogami, J. Membrane Sci., 280, 744 (2006).   DOI
32 B.C. Sales, J.U. Otaigbe, G.H. Beall, L.A. Boatner, and K.O. Ramey, J. Non-Cryst. Solids, 226, 287 (1998).   DOI
33 Richard K. Brow, J. Non-Cryst. Solids, 194, 267 (1996).   DOI
34 S. Mizusaki, Y. Toyoda, K. Nakayama, Y. Nagata, T.C. Ozawa, Y. Noro, and H. Samata, J. Membr. Sci., 355, 960 (2009).
35 S. Prakash, W. E. Mustain, S. H. Park, and P. A. Kohl, J. Power Sources, 175, 91 (2008).   DOI
36 M. T. Colomer, Adv. Mater., 18, 371 (2006).   DOI