• Title/Summary/Keyword: Ion Probe

Search Result 283, Processing Time 0.032 seconds

Hydrogen Production by the High Temperature Steam Electrolysis of NiO/YSZ/Pt Cell (NiO/YSZ/Pt 전해셀의 고온 수증기 전해에 의한 수소제조 특성)

  • Yu, Ji-Haeng;Kim, Young-Woon;Lee, Shi-Woo;Seo, Doo-Won;Hong, Ki-Suk;Han, In-Sub;Woo, Sang-Kuk
    • Journal of Hydrogen and New Energy
    • /
    • v.17 no.1
    • /
    • pp.62-68
    • /
    • 2006
  • High temperature electrolysis is a promising technology to produce massively hydrogen using renewable and nuclear energy. Solid oxide fuel cell materials are candidates as the components of steam electrolysers. However, the polarization characteristics of the typical electrode materials during the electrolysis have not been intensively investigated. In this study, NiO electrode was deposited on YSZ electrolyte by spin coat process and firing at $1300^{\circ}C$. Pt electrode was applied on the other side of the electrolyte to compare the polarization characteristics with those by NiO during electrolysis. The $H_2$ evolution rate was also monitored by measuring the electromotive force of Lambda probe and calculated by thermodynamic consideration. At low current density, Pt showed lower cathodic polarization and thus higher current efficiency than Ni, but the oxidation of Ni into NiO caused the increase of anodic resistance with increasing current density. High overpotential induced high power consumption to produce hydrogen by electrolysis.

An experimental study on turbulence characteristics of mixture and combustion characteristics of doubled jet burner flames (미연혼합기의 난류특성과 이중분류버너화염의 연소특성에 관한 실험적 연구)

  • Choe, Gyeong-Min;Jang, In-Gap;Choe, Byeong-Ryun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.2
    • /
    • pp.213-223
    • /
    • 1997
  • Premixed flame is better than diffusion flame to accomplish a high loading combustion. Since the turbulent characteristics of unburned mixture has a great influence on the flame structure, it is general that many researchers realize a high loading combustion with strengthening turbulent intensity of unburned mixture. Because turbulent premixed flame reacts efficiently on the condition of distributed reaction region, we made high turbulent premixed flame in the doubled impingement field. We investigated turbulent characteristics of unburned mixture with increasing shear force and visualized flames with direct and Schlieren photographs. And the combustion characteristics of flame was elucidated by instantaneous temperature measurement with a thermocouple, by ion currents with a micro electrostatic probe, by radical luminescence intensity and local equivalence ratio. Extremely strong turbulent of small scale is generated by impingement of mixture, and turbulent intensity of unburned mixture increased with the mean velocity. As a result of direct photographs, visible region of flame became longer due to increasing central direction flux. But as strengthed turbulent intensity, visible region of flame turned to shorter and reaction occurred efficiently. As strengthened turbulent intensity of mixture with increasing flux of central direction, maximum fluctuating temperature region moved to radial direction and fluctuation of temperature became lower. The reason is influx of central direction which caused flame zone to move toward radial direction, to maintain flame zone stable and to make flame scale smaller.

Nano adhesion and Friction of $DDPO_{4}$ and $ODPO_{4}$ SAM coatings (DDPO$_{4}$$ODPO_{4}$ SAM 코팅의 나노 응착 및 마찰 특성 연구)

  • Yoon, Eui-Sung;Yang, Seung-Ho;Kong, Ho-Sung;Grigoriev, Andrei Ya
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.207-214
    • /
    • 2002
  • Nano adhesion between SPM (scanning probe microscope) tips and $DDPO_{4}$ (dodecylphosphoric acid ester) and $ODPO_{4}$ (octadecylphosphoric acid ester) SAM (self-assembled monolayer) was experimentally studied. Tests were performed to measure the nano adhesion and friction in both AFM(atomic force microscope) and LFM(lateral force microscope) modes with the applied normal load. $DDPO_{4}$ and $ODPO_{4}$ SAM were formed on TiMe and TiOx surfaces. TiMe and TiOx were coated on the Si wafer by ion sputtering. Adhesion and friction of $DDPO_{4}$ and $ODPO_{4}$ SAM surfaces were compared with those of OTS (octadecyltrichlorosilane) SAM and DLC surfaces. $DDPO_{4}$ and $ODPO_{4}$ SAM converted the TiMe and TiOx surfaces to be hydrophobic. When the surface was hydrophobic, the adhesion and friction forces were found lower than those of bare surfaces. Work of adhesion was also discussed to explain how the surface was converted into hydrophobic. Results also showed that tribological characteristics of $DDPO_{4}$ and $ODPO_{4}$ had good properties in the adhesion, friction, wetting angle and work of adhesion. $DDPO_{4}$ and $ODPO_{4}$ SAM could be one of the candidates for the bio-MEMS elements.

  • PDF

Cloning of Xanthine Oxidase Gene from Mouse Liver cDNA Library

  • Lee, Chu-Hee;Lee, Sang-Il;Nam, Doo-Hyun;Heo, Geun
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.261-261
    • /
    • 1994
  • Bovine milk xanthine oxidase (E.C.1.1.3.22, XO) purchased from Sigma Chemical Co. had the three protein fragments below 150 kDa on 7.5% SDS-PAGE, which did not show enzyme activity. To remove these fragments, the enzyme preparation was further purified through Sephadex G-200 column chromatography. Two peaks exhibiting enzymatic activity were separated very closely to the void volume, which were revealed as two different enzyme forms, dimeric and monomeric, confirmed by activity staining on native PAGE. Anti sera-against each of the two enzyme forms were raised by subcutaneous injection at multiple sites on the back of rabbits during 4 weeks. On the immunodiffusion test, it was found that both of the antisera of the two forms could react with each other, which implied that their epitopes were identical In the Western blot analysis of mouse liver cytosol fraction, it was found that rabbit anti-XO antibody bound well with the protein band of monomeric mouse liver XO of about 150kDa. Based on this result, mouse liver cDNA 1 ibrary was screened by in situ hybridizat ion wi th rabbi t anti -XO antibody as probe. Through the immunological screening, recombinant phages giving positive signal by the production of XO were selected and further purified. To validate these clones, purified phages were lysogenized in E. coli Y1089 and their lysates were analysed for enzyme activity and immunoreactivity, It was verified that lysates of the purified recombinant phage lysogens exhibited the enzymatic activity as well as bound wi th XO antibody, when induced by IPTG. The above results assert that selected recombinant phage carries mouse liver XO gene.

  • PDF

A Study of Properties of Sn-3Ag-0.5Cu Solder Based on Phosphorous Content of Electroless Ni-P Layer (Sn-3Ag-0.5Cu Solder에 대한 무전해 Ni-P층의 P함량에 따른 특성 연구)

  • Shin, An-Seob;Ok, Dae-Yool;Jeong, Gi-Ho;Kim, Min-Ju;Park, Chang-Sik;Kong, Jin-Ho;Heo, Cheol-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.6
    • /
    • pp.481-486
    • /
    • 2010
  • ENIG (electroless Ni immersion gold) is one of surface finishing which has been most widely used in fine pitch SMT (surface mount technology) and BGA (ball grid array) packaging process. The reliability for package bondability is mainly affected by interfacial reaction between solder and surface finishing. Since the behavior of IMC (intermetallic compound), or the interfacial reaction between Ni and solder, affects to some product reliabilities such as solderability and bondability, understanding behavior of IMC should be important issue. Thus, we studied the properties of ENIG with P contents (9 wt% and 13 wt%), where the P contents is one of main factors in formation of IMC layer. The effect of P content was discussed using the results obtained from FE-SEM(field-emission scanning electron microscope), EPMA(electron probe micro analyzer), EDS(energy dispersive spectroscopy) and Dual-FIB(focused ion beam). Especially, we observed needle type irregular IMC layer with decreasing Ni contents under high P contents (13 wt%). Also, we found how IMC layer affects to bondability with forming continuous Kirkendall voids and thick P-rich layer.

Cloning and Characterization of a Gene Encoding $\gamma-Butyrolactone$ Autoregulator Receptor from Saccharopolyspora erythraea

  • LEE YONG-JIK;YEO SOO-HWAN;LEE IN SEON;LEE SAM-PIN;KITANI SHIGERU;NIHIRA TAKUYA;KIM HYUN SOO
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.77-83
    • /
    • 2006
  • A gene encoding a $\gamma-butyrolactone$ autoregulator receptor was cloned from Saccharopolyspora erythraea, and the biochemical characteristics, including the autoregulator specificity, were determined with the purified recombinant protein. Using primers designed for the conserved amino acid sequence of Streptomyces $\gamma-butyrolactone$ autoregulator receptors, a 120 bp S. erythraea DNA fragment was obtained by PCR. Southern and colony hybridization with the 120 bp fragment as a probe allowed to select a genomic clone of S. erythraea, pESG, harboring a 3.2 kb SacI fragment. Nucleotide sequencing analysis revealed a 615 bp open reading frame (ORF), showing moderate homology (identity, $31-34\%$; similarity, $45-47\%$) with the $\gamma-butyrolactone$ autoregulator receptors from Streptomyces sp., and this ORF was named seaR (Saccharopolyspora erythraea autoregulator receptor). The seaR/pET-3d plasmid was constructed to overexpress the recombinant SeaR protein (rSeaR) in Escherichia coli, and the rSeaR protein was purified to homogeneity by DEAE-Sephacel column chromatography, followed by DEAE-ion-exchange HPLC. The molecular mass of the purified rSeaR protein was 52 kDa by HPLC gel-filtration chromatography and 27 kDa by SDS-polyacrylamide gel electrophoresis, indicating that the rSeaR protein is present as a dimer. A binding assay with tritium-labeled autoregulators revealed that rSeaR has clear binding activity with a VB-C-type autoregulator as the most effective ligand, demonstrating for the first time that the erythromycin producer S. erythraea possesses a gene for the $\gamma-butyrolactone$autoregulator receptor.

Characterization of Films Sputtered with the Cu-Ga Target Prepared by the Cold Spray Process (저온분사법에 의해 제조된 Cu-Ga 타겟의 스퍼터링 특성평가)

  • Cho, Youngji;Yoo, Jung Ho;Yang, Jun-Mo;Park, Dong-Yong;Kim, Jong-Kyun;Choi, Gang-Bo;Chang, Jiho
    • Journal of Powder Materials
    • /
    • v.23 no.1
    • /
    • pp.21-25
    • /
    • 2016
  • The microstructural properties and electrical characteristics of sputtering films deposited with a Cu-Ga target are analyzed. The Cu-Ga target is prepared using the cold spray process and shows generally uniform composition distributions, as suggested by secondary ion mass spectrometer (SIMS) data. Characteristics of the sputtered Cu-Ga films are investigated at three positions (top, center and bottom) of the Cu-Ga target by X-ray diffraction (XRD), SIMS, 4-point probe and transmission electron microscopy (TEM) analysis methods. The results show that the Cu-Ga films are composed of hexagonal and unknown phases, and they have similar distributions of composition and resistivity at the top, center, and bottom regions of the Cu-Ga target. It demonstrates that these films have uniform properties regardless of the position on the Cu-Ga target. In conclusion, the cold spray process is expected to be a useful method for preparing sputter targets.

Chemisorption of CO on ultrathin epitaxial Ni films n Cu(001) surface

  • E.K. Hwang;J.J. Oh;Lee, J.S.;Kim, S.K.;Kim, J.S.;Kim, J.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.182-182
    • /
    • 1999
  • The chemisorption effect of CO on the Ni/Cu(001) surface was investigated using LEED(Low Energy Electron Diffraction) and EELS(Electron Energy Loss Spectrscopy0 under the UHV conditions. after mounting the Cu(001) single crystal in the UHV chamber (base pressure 1$\times$10-10Torr), a clean surface was obtained after a few cycles of repeated Ar+ ion sputtering and annealing at about 40$0^{\circ}C$. The epitaxial thin Ni films were formed on the Cu(001) by evaporation from 99.999% Ni block. The pseudomorphic growth and the orderness of the thin Ni films were monitored by c(2$^{\circ}C$2) LEED pattern. CO adlayers on Ni epitaxial thin films were prepared by dosing pure CO has through a leak valve. After CO adsorpton at room temperature, two pairs of peaks were observed by EELS, whose relative intensities are changed as the film thickness is varied and time is elapsed. These two pair of peaks are likely related to different bonding sites (-top and bridge sites) of C-Ni as well as C-O vibration. Experimental results and qualitative interpretation of the spectra wille be discussed. The possibility of using EELS in combination with probe species (CO) to investigate the nature of thin film growth is mentioned. We will report the experimental result of O2 dosage on Ni film and interaction of CO and O2.

  • PDF

Laser Patterning of Vertically Grown Carbon Nanotubes (수직성장된 탄소나노튜브의 선택적 패터닝)

  • Chang, Won Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.12
    • /
    • pp.1171-1176
    • /
    • 2012
  • The selective patterning of a carbon nanotube (CNT) forest on a Si substrate has been performed using a femtosecond laser. The high shock wave generated by the femtosecond laser effectively removed the CNTs without damage to the Si substrate. This process has many advantages because it is performed without chemicals and can be easily applied to large-area patterning. The CNTs grown by plasma-enhanced chemical vapor deposition (PECVD) have a catalyst cap at the end of the nanotube owing to the tip-growth mode mechanism. For the application of an electron emission and biosensor probe, the catalyst cap is usually removed chemically, which damages the surface of the CNT wall. Precise control of the femtosecond laser power and focal position could solve this problem. Furthermore, selective CNT cutting using a femtosecond laser is also possible without any phase change in the CNTs, which is usually observed in the focused ion beam irradiation of CNTs.

Characterization and bacterial anti-adherent effect on modified PMMA denture acrylic resin containing platinum nanoparticles

  • Nam, Ki-Young
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.3
    • /
    • pp.207-214
    • /
    • 2014
  • PURPOSE. This study characterized the synthesis of a modified PMMA (Polymethyl methacrylate) denture acrylic loading platinum nanoparticles (PtN) and assessed its bacterial inhibitory efficacy to produce novel antimicrobial denture base material. MATERIALS AND METHODS. Polymerized PMMA denture acrylic disc ($20mm{\times}2mm$) specimens containing 0 (control), 10, 50, 100 and 200 mg/L of PtN were fabricated respectively. The obtained platinum-PMMA nanocomposite (PtNC) was characterized by TEM (transmission electron microscopy), SEM/EDX (scanning electron microscope/energy dispersive X-ray spectroscopy), thermogravimetric and atomic absorption spectrophotometer analysis. In antimicrobial assay, specimens were placed on the cell culture plate, and $100{\mu}L$ of microbial suspensions of S. mutans (Streptococcus mutans) and S. sobrinus (Streptococcus sobrinus) were inoculated then incubated at $37^{\circ}C$ for 24 hours. The bacterial attachment was tested by FACS (fluorescence-activated cell sorting) analysis after staining with fluorescent probe. RESULTS. PtN were successfully loaded and uniformly immobilized into PMMA denture acrylic with a proper thermal stability and similar surface morphology as compared to control. PtNC expressed significant bacterial anti-adherent effect rather than bactericidal effect above 50 mg/L PtN loaded when compared to pristine PMMA (P=.01) with no or extremely small amounts of Pt ion eluted. CONCLUSION. This is the first report on the synthesis and its antibacterial activity of Pt-PMMA nanocomposite. PMMA denture acrylic loading PtN could be a possible intrinsic antimicrobial denture material with proper mechanical characteristics, meeting those specified for denture bases. For clinical application, future studies including biocompatibility, color stability and warranting the long-term effect were still required.