DOI QR코드

DOI QR Code

Characterization and bacterial anti-adherent effect on modified PMMA denture acrylic resin containing platinum nanoparticles

  • Nam, Ki-Young (Department of Dentistry, Dongsan Medical Center, School of Medicine, Keimyung University)
  • 투고 : 2013.12.01
  • 심사 : 2014.03.11
  • 발행 : 2014.06.30

초록

PURPOSE. This study characterized the synthesis of a modified PMMA (Polymethyl methacrylate) denture acrylic loading platinum nanoparticles (PtN) and assessed its bacterial inhibitory efficacy to produce novel antimicrobial denture base material. MATERIALS AND METHODS. Polymerized PMMA denture acrylic disc ($20mm{\times}2mm$) specimens containing 0 (control), 10, 50, 100 and 200 mg/L of PtN were fabricated respectively. The obtained platinum-PMMA nanocomposite (PtNC) was characterized by TEM (transmission electron microscopy), SEM/EDX (scanning electron microscope/energy dispersive X-ray spectroscopy), thermogravimetric and atomic absorption spectrophotometer analysis. In antimicrobial assay, specimens were placed on the cell culture plate, and $100{\mu}L$ of microbial suspensions of S. mutans (Streptococcus mutans) and S. sobrinus (Streptococcus sobrinus) were inoculated then incubated at $37^{\circ}C$ for 24 hours. The bacterial attachment was tested by FACS (fluorescence-activated cell sorting) analysis after staining with fluorescent probe. RESULTS. PtN were successfully loaded and uniformly immobilized into PMMA denture acrylic with a proper thermal stability and similar surface morphology as compared to control. PtNC expressed significant bacterial anti-adherent effect rather than bactericidal effect above 50 mg/L PtN loaded when compared to pristine PMMA (P=.01) with no or extremely small amounts of Pt ion eluted. CONCLUSION. This is the first report on the synthesis and its antibacterial activity of Pt-PMMA nanocomposite. PMMA denture acrylic loading PtN could be a possible intrinsic antimicrobial denture material with proper mechanical characteristics, meeting those specified for denture bases. For clinical application, future studies including biocompatibility, color stability and warranting the long-term effect were still required.

키워드

참고문헌

  1. Yildirim MS, Hasanreisoglu U, Hasirci N, Sultan N. Adherence of Candida albicans to glow-discharge modified acrylic denture base polymers. J Oral Rehabil 2005;32:518-25. https://doi.org/10.1111/j.1365-2842.2005.01454.x
  2. Klotz SA, Drutz DJ, Zajic JE. Factors governing adherence of Candida species to plastic surfaces. Infect Immun 1985; 50:97-101.
  3. Loesche WJ. Role of Streptococcus mutans in human dental decay. Microbiol Rev 1986;50:353-80.
  4. Saito T, Takatsuka T, Kato T, Ishihara K, Okuda K. Adherence of oral streptococci to an immobilized antimicrobial agent. Arch Oral Biol 1997;42:539-45. https://doi.org/10.1016/S0003-9969(97)00054-X
  5. Murdoch-Kinch CA, Mallatt ME, Miles DA. Oral mucosal injury caused by denture cleanser tablets: a case report. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1995;80:756-8. https://doi.org/10.1016/S1079-2104(05)80262-8
  6. Stone C, Sabes WR. Denture cleaner chemical burn. Gen Dent 1995;43:554-5.
  7. De Visschere LM, Grooten L, Theuniers G, Vanobbergen JN. Oral hygiene of elderly people in long-term care institutions- a cross-sectional study. Gerodontology 2006;23:195-204. https://doi.org/10.1111/j.1741-2358.2006.00139.x
  8. Panacek A, Kolar M, Vecerova R, Prucek R, Soukupova J, Krystof V, Hamal P, Zboril R, Kvitek L. Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 2009;30:6333-40. https://doi.org/10.1016/j.biomaterials.2009.07.065
  9. Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 2009;27:76-83. https://doi.org/10.1016/j.biotechadv.2008.09.002
  10. Sawosz E, Chwalibog A, Szeliga J, Sawosz F, Grodzik M, Rupiewicz M, Niemiec T, Kacprzyk K. Visualization of gold and platinum nanoparticles interacting with Salmonella enteritidis and Listeria monocytogenes. Int J Nanomedicine 2010; 5:631-7.
  11. Rosenberg B, Vancamp L, Krigas T. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature 1965;205:698-9. https://doi.org/10.1038/205698a0
  12. Chwalibog A, Sawosz E, Hotowy A, Szeliga J, Mitura S, Mitura K, Grodzik M, Orlowski P, Sokolowska A. Visualization of interaction between inorganic nanoparticles and bacteria or fungi. Int J Nanomedicine 2010;5:1085-94.
  13. Onizawa S, Aoshiba K, Kajita M, Miyamoto Y, Nagai A. Platinum nanoparticle antioxidants inhibit pulmonary inflammation in mice exposed to cigarette smoke. Pulm Pharmacol Ther 2009;22:340-9. https://doi.org/10.1016/j.pupt.2008.12.015
  14. Sur I, Cam D, Kahraman M, Baysal A, Culha M. Interaction of multi-functional silver nanoparticles with living cells. Nanotechnology 2010;21:175104. https://doi.org/10.1088/0957-4484/21/17/175104
  15. Wang Y, Bansal V, Zelikin AN, Caruso F. Templated synthesis of single-component polymer capsules and their application in drug delivery. Nano Lett 2008;8:1741-5. https://doi.org/10.1021/nl080877c
  16. Boomi P, Prabu HG, Mathiyarasu J. Synthesis and characterization of polyaniline/Ag-Pt nanocomposite for improved antibacterial activity. Colloids Surf B Biointerfaces 2013;103: 9-14. https://doi.org/10.1016/j.colsurfb.2012.10.044
  17. Hoshika S, Nagano F, Tanaka T, Ikeda T, Wada T, Asakura K, Koshiro K, Selimovic D, Miyamoto Y, Sidhu SK, Sano H. Effect of application time of colloidal platinum nanoparticles on the microtensile bond strength to dentin. Dent Mater J 2010;29:682-9. https://doi.org/10.4012/dmj.2009-125
  18. Hoshika S, Nagano F, Tanaka T, Wada T, Asakura K, Koshiro K, Selimovic D, Miyamoto Y, Sidhu SK, Sano H. Expansion of nanotechnology for dentistry: effect of colloidal platinum nanoparticles on dentin adhesion mediated by 4-META/MMA-TBB. J Adhes Dent 2011;13:411-6.
  19. Ma S, Izutani N, Imazato S, Chen JH, Kiba W, Yoshikawa R, Takeda K, Kitagawa H, Ebisu S. Assessment of bactericidal effects of quaternary ammonium-based antibacterial monomers in combination with colloidal platinum nanoparticles. Dent Mater J 2012;31:150-6. https://doi.org/10.4012/dmj.2011-180
  20. Akin D, Sturgis J, Ragheb K, Sherman D, Burkholder K, Robinson JP, Bhunia AK, Mohammed S, Bashir R. Bacteriamediated delivery of nanoparticles and cargo into cells. Nat Nanotechnol 2007;2:441-9. https://doi.org/10.1038/nnano.2007.149
  21. Goodman CM, McCusker CD, Yilmaz T, Rotello VM. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 2004;15:897-900. https://doi.org/10.1021/bc049951i
  22. Park MV, Neigh AM, Vermeulen JP, de la Fonteyne LJ, Verharen HW, Briede JJ, van Loveren H, de Jong WH. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 2011;32:9810-7. https://doi.org/10.1016/j.biomaterials.2011.08.085
  23. Campoccia D, Montanaro L, Arciola CR. A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials 2013;34:8533-54. https://doi.org/10.1016/j.biomaterials.2013.07.089
  24. Kajita M, Hikosaka K, Iitsuka M, Kanayama A, Toshima N, Miyamoto Y. Platinum nanoparticle is a useful scavenger of superoxide anion and hydrogen peroxide. Free Radic Res 2007;41:615-26. https://doi.org/10.1080/10715760601169679
  25. Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gramnegative bacteria. J Colloid Interface Sci 2004;275:177-82. https://doi.org/10.1016/j.jcis.2004.02.012
  26. Lima E, Guerra R, Lara V, Guzman A. Gold nanoparticles as efficient antimicrobial agents for Escherichia coli and Salmonella typhi. Chem Cent J 2013;7:11. https://doi.org/10.1186/1752-153X-7-11
  27. Alvarez-Barrientos A, Arroyo J, Canton R, Nombela C, Sanchez-Perez M. Applications of flow cytometry to clinical microbiology. Clin Microbiol Rev 2000;13:167-95. https://doi.org/10.1128/CMR.13.2.167-195.2000
  28. Pils S, Schmitter T, Neske F, Hauck CR. Quantification of bacterial invasion into adherent cells by flow cytometry. J Microbiol Methods 2006;65:301-10. https://doi.org/10.1016/j.mimet.2005.08.013
  29. Damm C, Munstedt H, Rosch A. Long-term antimicrobial polyamide 6/silver-nanocomposites. J Mater Sci 2007;42: 6067-73. https://doi.org/10.1007/s10853-006-1158-5
  30. Kumar R, Munstedt H. Silver ion release from antimicrobial polyamide/silver composites. Biomaterials 2005;26:2081-8. https://doi.org/10.1016/j.biomaterials.2004.05.030
  31. Ahn SJ, Lee SJ, Kook JK, Lim BS. Experimental antimicrobial orthodontic adhesives using nanofillers and silver nanoparticles. Dent Mater 2009;25:206-13. https://doi.org/10.1016/j.dental.2008.06.002
  32. Yoshida K, Tanagawa M, Atsuta M. Characterization and inhibitory effect of antibacterial dental resin composites incorporating silver-supported materials. J Biomed Mater Res 1999;47:516-22. https://doi.org/10.1002/(SICI)1097-4636(19991215)47:4<516::AID-JBM7>3.0.CO;2-E
  33. Imazato S, Ebi N, Takahashi Y, Kaneko T, Ebisu S, Russell RR. Antibacterial activity of bactericide-immobilized filler for resin-based restoratives. Biomaterials 2003;24:3605-9. https://doi.org/10.1016/S0142-9612(03)00217-5
  34. Kiremitci-Gumusderelioglu M, Pesmen A. Microbial adhesion to ionogenic PHEMA, PU and PP implants. Biomaterials 1996;17:443-9. https://doi.org/10.1016/0142-9612(96)89662-1
  35. Wang H, Qiao X, Chen J, Wang X, Ding S. Mechanisms of PVP in the preparation of silver nanoparticles. Mater Chem Phys 2005;94:449-53. https://doi.org/10.1016/j.matchemphys.2005.05.005
  36. El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM. Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 2011;45:283-7. https://doi.org/10.1021/es1034188
  37. Silva T, Pokhrel LR, Dubey B, Tolaymat TM, Maier KJ, Liu X. Particle size, surface charge and concentration dependent ecotoxicity of three organo-coated silver nanoparticles: comparison between general linear model-predicted and observed toxicity. Sci Total Environ 2014;468-469:968-76. https://doi.org/10.1016/j.scitotenv.2013.09.006
  38. Fletcher M, Loeb GI. Influence of substratum characteristics on the attachment of a marine pseudomonad to solid surfaces. Appl Environ Microbiol 1979;37:67-72.
  39. Liu J, Hurt RH. Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 2010;44: 2169-75. https://doi.org/10.1021/es9035557
  40. Soygun K, Bolayir G, Boztug A. Mechanical and thermal properties of polyamide versus reinforced PMMA denture base materials. J Adv Prosthodont 2013;5:153-60. https://doi.org/10.4047/jap.2013.5.2.153
  41. Jerolimov V, Jagger RG, Milward PJ. Effect of the curing cycle on acrylic denture base glass transition temperatures. J Dent 1991;19:245-8. https://doi.org/10.1016/0300-5712(91)90128-L
  42. Davy KW, Anseau MR, Berry C. Iodinated methacrylate copolymers as X-ray opaque denture base acrylics. J Dent 1997; 25:499-505. https://doi.org/10.1016/S0300-5712(96)00064-4
  43. Aydogan Ayaz E, Durkan R, Bagis B. The effect of acrylamide incorporation on the thermal and physical properties of denture resins. J Adv Prosthodont 2013;5:110-7. https://doi.org/10.4047/jap.2013.5.2.110

피인용 문헌

  1. Color stability, water sorption and cytotoxicity of thermoplastic acrylic resin for non metal clasp denture vol.7, pp.4, 2015, https://doi.org/10.4047/jap.2015.7.4.278
  2. Platinum nanoparticles in nanobiomedicine vol.46, pp.16, 2017, https://doi.org/10.1039/C7CS00152E
  3. Effect of Storage in Distilled Water for Three Months on the Antimicrobial Properties of Poly(methyl methacrylate) Denture Base Material Doped with Inorganic Filler vol.9, pp.5, 2016, https://doi.org/10.3390/ma9050328
  4. The Physical Properties of PMMA Denture base Resin Incorporated with Vanillin vol.773, pp.1662-9795, 2018, https://doi.org/10.4028/www.scientific.net/KEM.773.338
  5. Platinum corrosion products from electrode contacts of human cochlear implants induce cell death in cell culture models vol.13, pp.5, 2018, https://doi.org/10.1371/journal.pone.0196649
  6. Antimicrobial Drugs in Fighting against Antimicrobial Resistance vol.7, pp.None, 2014, https://doi.org/10.3389/fmicb.2016.00470
  7. Application of Antimicrobial Nanoparticles in Dentistry vol.24, pp.6, 2014, https://doi.org/10.3390/molecules24061033
  8. A review of the antimicrobial potential of precious metal derived nanoparticle constructs vol.30, pp.37, 2014, https://doi.org/10.1088/1361-6528/ab0d38
  9. Effect of Antibacterial Silver-Releasing Filler on the Physicochemical Properties of Poly(Methyl Methacrylate) Denture Base Material vol.12, pp.24, 2014, https://doi.org/10.3390/ma12244146
  10. Mechanical properties of new denture base material modified with gold nanoparticles vol.65, pp.2, 2014, https://doi.org/10.2186/jpr.jpor_2019_581
  11. Application of Selected Nanomaterials and Ozone in Modern Clinical Dentistry vol.11, pp.2, 2014, https://doi.org/10.3390/nano11020259
  12. Drug Delivery (Nano)Platforms for Oral and Dental Applications: Tissue Regeneration, Infection Control, and Cancer Management vol.8, pp.8, 2014, https://doi.org/10.1002/advs.202004014
  13. Incorporation of antimicrobial agents in denture base resin: A systematic review vol.126, pp.2, 2021, https://doi.org/10.1016/j.prosdent.2020.03.033
  14. Nanoparticle-modified PMMA to prevent denture stomatitis: a systematic review vol.204, pp.1, 2014, https://doi.org/10.1007/s00203-021-02653-4