• Title/Summary/Keyword: Ion Flux

Search Result 253, Processing Time 0.027 seconds

Analysis of Si Etch Uniformity of Very High Frequency Driven - Capacitively Coupled Ar/SF6 Plasmas (VHF-CCP 설비에서 Ar/SF6 플라즈마 분포가 Si 식각 균일도에 미치는 영향 분석)

  • Lim, Seongjae;Lee, Ingyu;Lee, Haneul;Son, Sung Hyun;Kim, Gon-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.72-77
    • /
    • 2021
  • The radial distribution of etch rate was analyzed using the ion energy flux model in VHF-CCP. In order to exclude the effects of polymer passivation and F radical depletion on the etching. The experiment was performed in Ar/SF6 plasma with an SF6 molar ratio of 80% of operating pressure 10 and 20 mTorr. The radial distribution of Ar/SF6 plasma was diagnosed with RF compensated Langmuir Probe(cLP) and Retarding Field Energy Analyzer(RFEA). The radial distribution of ion energy flux was calculated with Bohm current times the sheath voltage which is determined by the potential difference between the plasma space potential (measured by cLP) and the surface floating potential (by RFEA). To analyze the etch rate uniformity, Si coupon samples were etched under the same condition. The ion energy flux and the etch rate show a close correlation of more than 0.94 of R2 value. It means that the etch rate distribution is explained by the ion energy flux.

A Study on the Comparison of Chloride Ion Quantification Methods for Magnesium-Aluminum (Mg-Al) Alloy Powder (마그네슘-알루미늄(Mg-Al) 합금 분말의 염소이온 정량법의 비교에 관한 연구)

  • Yunhwan, Kim;Youngson Choe
    • Applied Chemistry for Engineering
    • /
    • v.34 no.4
    • /
    • pp.450-454
    • /
    • 2023
  • Chloride ions in the alloy powder used as flux in Flux Cored Arc Welding (FCAW) can cause pores on the bead surface of the welding metal to cause defects, or chloride remaining in the alloy powder can cause corrosion of the metal. Combustion-ion chromatography is mainly used to quantify the chloride ions in alloy powder, but there is a limitation in that the equipment is expensive and requires a high degree of expertise. Therefore, this study aims to find an easy and accurate quantification method in the field by comparing combustion-ion chromatography (C-IC), which is mainly used for chloride ion quantification of alloy powder, X-ray fluorescence analysis (XRF), and potentiometric titration. In this article, magnesium-aluminum alloy powder is applied to the quantification of chloride ions because it is most commonly used as flux. This study confirmed that potentiometric titration can be applied to the quantification of chloride ions in the alloy powder in the industry field.

Basic Investigation into the Validity of Thermal Analysis of 18650 Li-ion Battery Pack Using CFD Simulation (CFD 해석을 적용한 18650 리튬-이온 배터리 팩의 열 해석 신뢰도 기초 분석)

  • SIM, CHANG-HWI;KIM, HAN-SANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.5
    • /
    • pp.489-497
    • /
    • 2020
  • The Li-ion battery is considered to be one of the potential power sources for electric vehicles. In fact, the efficiency, reliability, and cycle life of Li-ion batteries are highly influenced by their thermal conditions. Therefore, a novel thermal management system is highly required to simultaneously achieve high performance and long life of the battery pack. Basically, thermal modeling is a key issue for the novel thermal management of Li-ion battery systems. In this paper, as a basic study for battery thermal modeling, temperature distributions inside the simple Li-ion battery pack (comprises of nine 18650 Li-ion batteries) under a 1C discharging condition were investigated using measurement and computational fluid dynamics (CFD) simulation approaches. The heat flux boundary conditions of battery cells for the CFD thermal analysis of battery pack were provided by the measurement of single battery cell temperature. The temperature distribution inside the battery pack were compared at six monitoring locations. Results show that the accurate estimation of heat flux at the surface of single cylindrical battery is paramount to the prediction of temperature distributions inside the Li-ion battery under various discharging conditions (C-rates). It is considered that the research approach for the estimation of temperature distribution used in this study can be used as a basic tool to understand the thermal behavior of Li-ion battery pack for the construction of effective battery thermal management systems.

PET Fabric Supported Fixed Site Carrier Membrane for Selective Metal ion Transport

  • Jin, Long Yi;Mah, Soukil
    • Fibers and Polymers
    • /
    • v.3 no.1
    • /
    • pp.14-17
    • /
    • 2002
  • Development of a novel fixed site carrier membrane (FCM), supported by PET fabric for metal ion separation is reported. The membranes were prepared by dipping PET fabric into the methylene chloride solution of Poly(5-vinyl-m-phe-nylene-m'-phenylene-32-crown-10) (P(VCE)), a polymeric metal ion carrier. It was found that the flux of mono-valent metal ion transported across the membrane is signif=cantly differed from each other and the flux decreases in the order $Cs^+$>$Rb^+$>$K^+$>$Na^+$>$Li^+$ irrespective to the anion except perchlorate anion. It was explained in terms of the stability of the complex, formed by crown ether unit of the P(VCE) and the various metal ions, meanwhile, the lower rate of transport in the presence of perchlorate anion was ascribed to its low hydrophilicity.

Exploring the Properties and Potential of Single-crystal NCM 811 for Lithium-ion Batteries

  • Yongseok Lee;Seunghoon Nam
    • Corrosion Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.36-43
    • /
    • 2023
  • Single-crystal Ni-rich NCM is a material that has drawn attention in the field of lithium-ion batteries due to its high energy density and long cycle life. In this study, we investigated the properties of single-crystal NCM 811 and its potential for use in lithium-ion batteries. High-quality single crystals of NCM 811 were successfully synthesized by crystal growth via a flux method. The single-crystal nature of the samples was confirmed through detailed characterization techniques, such as scanning electron microscopy and x-ray diffraction with Rietveld refinement. The crystal structure and electrochemical performances of the single-crystal NCM 811 were analyzed and compared to its poly-crystal counterpart. The results indicated that single-crystal NCM 811 had electrochemical performance and thermal stability superior to poly-crystalline NCM 811, making it a suitable candidate for high-performance batteries. The findings of this study contribute to a better understanding of the characteristics and potential of single-crystal NCM 811 for lithium-ion batteries.

The Role of Metal Catalyst on Water Permeation and Stability of BaCe0.8Y0.2O3-δ

  • Al, S.;Zhang, G.
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.212-219
    • /
    • 2018
  • Perovskite type ceramic membranes which exhibit dual ion conduction (proton and oxygen ion conduction) can permeate water and can aid solving operational problems such as temperature gradient and carbon deposition associated with a working solid oxide fuel cell. From this point of view, it is crucial to reveal water transport mechanism and especially the nature of the surface sites that is necessary for water incorporation and evolution. $BaCe_{0.8}Y_{0.2}O_{3-{\alpha}}$ (BCY20) was used as a model proton and oxygen ion conducting membrane in this work. Four different catalytically modified membrane configurations were used for the investigations and water flux was measured as a function of temperature. In addition, CO was introduced to the permeate side in order to test the stability of membrane against water and $CO/CO_2$ and post operation analysis of used membranes were carried out. The results revealed that water incorporation occurs on any exposed electrolyte surface. However, the magnitude of water permeation changes depending on which membrane surface is catalytically modified. The platinum increases the water flux on the feed side whilst it decreases the flux on the permeate side. Water flux measurements suggest that platinum can block water permeation on the permeate side by reducing the access to the lattice oxygen in the surface layer.

Ion Conductivity of Membrane in Proton Exchange Membrane Fuel Cell (고분자전해질 연료전지에서 고분자 막의 이온 전도도)

  • Hwang, Byungchan;Chung, Hoi-Bum;Lee, Moo-Seok;Lee, Dong-Hoon;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.593-597
    • /
    • 2016
  • The effects of relative humidity, current density and temperature on the ionic conductivity were studied in PEMFC (Proton Exchange Membrane Fuel Cell). Water contents and water flux in the electrolyte membrane largely affected ion conductivity. The water flux was modelled and simulated by only electro-osmotic drag and back-diffusion of water. Ion conductivities were measured at membrane state out of cell and measured at MEA (Membrane and Electrode Assembly) state in condition of operation. The water contents in membrane increase as relative humidity increased in PEMFC, as a results of which ion conductivity increased. Current enhanced electro-osmotic drag and back diffusion and then water contents linearly increased. Enhancement of current density results in ion conductivity. Ion conductivity of about 40% increased as the temperature increased from $50^{\circ}C$ to $80^{\circ}C$.

이온토포레시스에 의한 피리도스티그민과 클로르페니라민의 in vitro 경피흡수

  • 심창구;김종국
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1993.04a
    • /
    • pp.179-179
    • /
    • 1993
  • 1. PS및 CP의 flux는 전류의 새기 및 donor의 약물농도에 비래하였다. 2. pH의 flux는 pH가 증가할수록 증가하였으나, CP(pKa=9.2)의 flux는 pH=2에서 최대치를 보였다. 이는 약물의 해리 정도와 H$^{+}$이온의 mobility, 또 피부의 permselectivity의 balance에 의해 결정된 것으로 생각된다. 3. donor cell에 NaCl을 첨가하면 두 약물 공히, 그러나 특히 PS의 flux가 저하되었다. 이는 두 약물의 이온과 $Na^{+}$의 mobility차이에 기인한다고 생각된다. 4. PS의 경우 taurodeoxycholate(TDC)같은 음이온을 donor cell에 공존시키면 flux가 감소하였다. 이는 PS와 TDC가 전기적으로 중성인 ion-pair complex를 형성함으로써 PS이온의 유효농도가 감소하기 때문으로 생각된다.

  • PDF

NON-COPLANAR MAGNETIC RECONNECTION AS A MAGNETIC TWIST ORIGIN

  • CHAE JONGCHUL
    • Journal of The Korean Astronomical Society
    • /
    • v.32 no.2
    • /
    • pp.137-147
    • /
    • 1999
  • Recent studies show the importance of understanding three-dimensional magnetic reconnect ion on the solar surface. For this purpose, I consider non-coplanar magnetic reconnection, a simple case of three-dimensional reconnect ion driven by a collision of two straight flux tubes which are not on the same plane initially. The relative angle e between the two tubes characterizes such reconnection, and can be regarded as a measure of magnetic shear. The observable characteristics of non-coplanar reconnection are compared between the two cases of small and large angles. An important feature of the non-coplanar reconnect ion is that magnetic twist can be produced via the re-ordering of field lines. This is a consequence of the conversion of mutual helicity into self helicities by reconnection. It is shown that the principle of energy conservation when combined with the production of magnetic twist puts a low limit on the relative angle between two flux tubes for reconnect ion to occur. I provide several observations supporting the magnetic twist generation by reconnection, and discuss its physical implications for the origin of magnetic twist on the solar surface and the problem of coronal heating.

  • PDF

Two-dimensional continuum modelling of an inductively coupled plasma reactor

  • Kim, Dong-Ho;Shung, Won-Young;Kim, Do-Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.2
    • /
    • pp.128-133
    • /
    • 2000
  • Numerical analysis of the transport phenomena in an inductively coupled plasma reactor was conducted with two-dimensional axisymmetric model including the electromagnetic field model, electron and species density models. The spatial distribution of the charged species in the ion flux to the wafer have been calculated to examine the influence of the process conditions including antenna and reactor geometry. The antenna radius had a significant influence on the plasma state and axial ion flux distribution.

  • PDF