NON-COPLANAR MAGNETIC RECONNECTION AS A MAGNETIC TWIST ORIGIN

  • CHAE JONGCHUL (Big Bear Solar Observatory, New Jersey Institute of Technology)
  • Published : 1999.10.01

Abstract

Recent studies show the importance of understanding three-dimensional magnetic reconnect ion on the solar surface. For this purpose, I consider non-coplanar magnetic reconnection, a simple case of three-dimensional reconnect ion driven by a collision of two straight flux tubes which are not on the same plane initially. The relative angle e between the two tubes characterizes such reconnection, and can be regarded as a measure of magnetic shear. The observable characteristics of non-coplanar reconnection are compared between the two cases of small and large angles. An important feature of the non-coplanar reconnect ion is that magnetic twist can be produced via the re-ordering of field lines. This is a consequence of the conversion of mutual helicity into self helicities by reconnection. It is shown that the principle of energy conservation when combined with the production of magnetic twist puts a low limit on the relative angle between two flux tubes for reconnect ion to occur. I provide several observations supporting the magnetic twist generation by reconnection, and discuss its physical implications for the origin of magnetic twist on the solar surface and the problem of coronal heating.

Keywords

References

  1. ApJ v.526 Aschwanden, M. J;Kosugi, T;Hanaoka, Y;Nishio, M;Melrose, D. B
  2. Geophys. Monogr. Ser. Magnetic Helicity in Space and Laboratory Plasma Berger, M;Brown, M. R(ed.);Canfield, R. C(ed.);Pevtsov, A. A(ed.)
  3. Sol. Phys. v.182 Canfield, R. C;Reardon, K. P
  4. ApJ v.497 Chae, J;Wang, H;Lee, C. Y;Goode, P. R;Scgygke, U
  5. ApJ v.505 Chae, J;Schuhle, U;lemaire, P
  6. ApJL Chae, J;Wang, H;Goode, P. R;Fludra, A;Schuhle, U
  7. ApJ Chae, J;Wang, H;Qiu, J;Goode, P. R;Wilhelm, K
  8. Sol. Phys. v.165 Hanaoka, Y
  9. Sol. Phys. v.173 Hanaoka, Y
  10. Sol. Phys. v.175 Harrison, R. A
  11. A&A v.351 Harrison, R. A;Lang, J;Brooks, D. H;Innes, D
  12. ApJ v.216 Heyvaerts, J;Priest, E. R;Rust, D. M
  13. ApJ v.489 Kuijpers, J
  14. ApJ v.507 Longcope, D. W;Fisher, G. H;Pevtsov, A. A.
  15. ASP Conf. Ser. 150: IAU Colloq. 167: New Perspectives on Solar Prominences Martin, S. F
  16. ApJ v.486 Melrose, D. B
  17. ApJ v.489 Nishio, M;Yaji, K;Kosugi, T;Nakajima, H;Sakurai, T
  18. ApJ v.264 Parker, E. N
  19. ApJ v.264 Parker, E. N
  20. ApJ v.330 Parker, E. N
  21. ApJ v.473 Pevtsov, A. A;Canfield, R. C;Zirin, H
  22. ApJ v.427 Priest, E. R;Parnell, C. E;Martin, S. F
  23. J. Geophys. Res. v.94 Song, Y;Lysak, R. L
  24. ApJ v.424 Wang, H;Ewell, M. W;Jr., Zirin, H;Ai, G
  25. Sol. Phys. v.183 Wang, H;Chae, J;Gurman, J. B;Kucera, T. A
  26. Planet. Space Sci. v.35 Wright, A. N
  27. Geophys, Monogr. Ser. Magnetic Helicity in Space and Laboratory Plasma Wright, A. N;Brown, M. R(ed.);Canfield, R. C(ed.);Pevtsov, A. A(ed.)
  28. Geophys. Monogr. Ser. Magnetic Helicity in Space and Laboratory Plasma Van Ballegooijen, A;Brown, M. R(ed.);Canfield, R. C(ed.);Pevtsov, A. A(ed.)