• Title/Summary/Keyword: Ion Exchange Capacity

Search Result 391, Processing Time 0.029 seconds

Structural and Electrochemical Properties of Li2Mn0.5Fe0.5SiO4/C Cathode Nanocomposite

  • Chung, Young-Min;Yu, Seung-Ho;Song, Min-Seob;Kim, Sung-Soo;Cho, Won-Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4205-4209
    • /
    • 2011
  • The $Li_2Mn_{0.5}Fe_{0.5}SiO_4$ silicate was prepared by blending of $Li_2MnSiO_4$ and $Li_2FeSiO_4$ precursors with same molar ratio. The one of the silicates of $Li_2FeSiO_4$ is known as high capacitive up to ~330 mAh/g due to 2 mole electron exchange, and the other of $Li_2FeSiO_4$ has identical structure with $Li_2MnSiO_4$ and shows stable cycle with less capacity of ~170 mAh/g. The major drawback of silicate family is low electronic conductivity (3 orders of magnitude lower than $LiFePO_4$). To overcome this disadvantage, carbon composite of the silicate compound was prepared by sucrose mixing with silicate precursors and heat-treated in reducing atmosphere. The crystal structure and physical morphology of $Li_2Mn_{0.5}Fe_{0.5}SiO_4$ was investigated by X-ray diffraction, scanning electron microscopy, and high resolution transmission electron microscopy. The $Li_2Mn_{0.5}Fe_{0.5}SiO_4$/C nanocomposite has a maximum discharge capacity of 200 mAh/g, and 63% of its discharge capacity is retained after the tenth cycles. We have realized that more than 1 mole of electrons are exchanged in $Li_2Mn_{0.5}Fe_{0.5}SiO_4$. We have observed that $Li_2Mn_{0.5}Fe_{0.5}SiO_4$ is unstable structure upon first delithiation with structural collapse. High temperature cell performance result shows high capacity of discharge capacity (244 mAh/g) but it had poor capacity retention (50%) due to the accelerated structural degradation and related reaction.

Synthesis of Crosslinkable m-Aramid Ionomer Containing Sulfonated Ether Sulfone and Their Characterization for PEMFC Membrane (Sulfonated Ether Sulfone을 포함한 Crosslinkable m-Aramid계 Ionomer의 합성과 연료전지 막으로의 이용)

  • Jung, Hyun-Jin;Kim, Jung-Min;Cho, Chang-Gi
    • Polymer(Korea)
    • /
    • v.34 no.3
    • /
    • pp.202-209
    • /
    • 2010
  • Aromatic copolyamides were prepared and their applicability to proton exchange membrane wasstudied. The copolymer contains thermally stable and mechanically strong poly(m-phenylene isophthalamide) segments, and easily processable and good film forming polysulfone segments. For the copolymer, amineterminated sulfonated ether sulfone monomer, m-phenylene diamine, and isophthaloyl chloride were reacted, and the obtained copolymer was transformed into crosslinkable prepolymer by the reaction with acryloyl chloride. The prepolymer was thermally cured and converted into proton exchange membranes for fuel cell application. Each reaction step and the molecular characteristics of precursor copolymers were monitored and confirmed by $^1H$ NMR, FTIR, and titration. The performance of the membranes was measured in terms of water uptake, proton conductivity, and thermal stability. The water uptake, ion exchange capacity (IEC), and proton conductivity of the membranes increased with the increase of sulfonated ether sulfone segment content. Membrane containing 30 mol% sulfonic acid sulfone segment showed 1.57 meq/g IEC value. Water uptake was limited less than 44 wt% and the highest proton conductivity up to $3.93{\times}10^{-2}S/cm$ ($25^{\circ}C$, RH= 100%) was observed.

Preparation and Characterization of Crosslinked Copolymer Membrane Containing Sulfonated Poly(ether sulfone) and p-Phenylene Terephthalamide Segments (Sulfonated Poly(ether sulfone)과 p-Phenylene Terephthalamide 세그먼트를 포함하는 가교 공중합체 멤브레인의 제조 및 특성 연구)

  • Kim, Jung-Min;Hwang, Seung-Sik;Cho, Chang-Gi
    • Polymer(Korea)
    • /
    • v.35 no.2
    • /
    • pp.106-112
    • /
    • 2011
  • Aromatic copolyamides were prepared and their applicability to proton exchange membrane was studied. The copolymers contain two segments; thermally stable and mechanically strong poly (p-phenylene terephthalamide) (PPTA), and easily processable and good film-forming polysulfone. For the copolymers, different ratios of amine-terminated sulfonated ether sulfone monomer, terephthaloyl chloride, and p-phenylene diamine were sequentially reacted. The obtained copolymers were mixed with trimethylolpropane triglycidyl ether (TMPTGE), thermally cured, and converted into proton exchange membranes for fuel cell application. The reactions at each step and the molecular characteristics of precursor copolymers were confirmed by $^1H$ NMR, FTIR, and titration. The performance of the membranes was measured in terms of water uptake and proton conductivity. The water uptake, ion exchange capacity (IEC), and proton conductivity of the membranes increased with the increase of sulfonated ether sulfone segment content. Membrane containing 60 mol% sulfonic acid sulfone segment showed 1.88 meq/g IEC value. Water uptake was limited less than 110 wt% and the highest proton conductivity was up to $7.4{\times}10^{-2}$ S/cm ($25^{\circ}C$, RH=100%).

Surface Impregnation of Glycine to Activated Carbon Adsorbents for Dry Capture of Carbon Dioxide

  • Lim, Yun Hui;Adelodun, Adedeji A.;Kim, Dong Woo;Jo, Young Min
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.2
    • /
    • pp.99-113
    • /
    • 2016
  • In order to improve the portability of basic absorbents monoethanolamine (MEA) and glycine (Gly), both were supported on microporous activated carbon (AC). Chemical modification by alkali-metal ion exchange (of Li, Na, K) was carried out on Gly-based absorbents. All supported absorbents were subjected to $CO_2$ absorption capacity (pure $CO_2$) and selectivity (indoor level) tests. Textural and chemical characterizations were carried out on test sorbents. All impregnation brought about significant reduction of specific surface area and microporosity of the adsorbent Depreciation in the textural properties was found to result to reduction in pure $CO_2$ sorption. Contrarily, low-level $CO_2$ removal capacity was enhanced as the absorbent dosage increases, resulting in supported 5 molar MEA in methanol solution. Adsorption capacities were improved from 0.016 and 0.8 in raw ACs to 1.065 mmol/g for MEA's. Surface chemistry via X-ray photoelectron spectroscopy (XPS) of the supported sorbents showed the presence of amine, pyrrole and quaternary-N. In reducing sequence of potency, pyridine, amine and pyrrolic-N were noticed to contribute significantly to $CO_2$ selective adsorption. Furthermore, the adsorption isotherm study confirms the presence of various SNGs heterogeneously distributed on AC. The adsorption mechanism of the present AC adsorbents favored Freundlich and Langmuir isotherm at lower and higher $CO_2$ concentrations respectively.

A Study on Dealumination of NaY Zeolite and its VOCs Adsorption Properties (Dealumination에 의한 NaY zeolite의 개질과 VOCs 흡착특성에 관한 연구)

  • Kang, Shinchoon;Lee, Hwayeol;Park, Yeungho
    • Korean Chemical Engineering Research
    • /
    • v.53 no.3
    • /
    • pp.339-349
    • /
    • 2015
  • In this work, DAY (Dealuminated Y-type) zeolites were prepared to be used as easily regenerable and thermally stable adsorbent substituting activated carbon. NaY zeolites were transformed into DAY zeolites through ion exchange, calcination, steaming, and acid leaching. Calcination temperature and time, and steaming time were changed to increase the Si/Al ratio and maintain crystallinity. Adsorption of VOCs were done for prepared DAY, commercial NaY and Hisiv 1000 in air with relative humidity of 50%. The DAY zeolite prepared by calcination at $520^{\circ}C$ for 4 hrs and steaming for 7 hrs had a same structure and a Si/Al ratio of 80.4. Its adsorption capacity for water vapor was 10% of NaY, indicating its hydrophobicity. Its adsorption capacity for MEK was 0.8 times of Hisiv 1000, that for toluene 1.6 times, and that for EA 1.3 times.

Physicochemical Properties and Intestinal Bacterial Growth-Promoting Effect of Cell-Wall Polysaccharides from Cucumber Peel

  • Jun, Hyun-Il;Song, Geun-Seoup;Lee, Young-Tack;Kim, Young-Soo
    • Food Science and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.375-379
    • /
    • 2005
  • Physicochemical properties, intestinal microbial growth, and inhibitory effects of alcohol-insoluble polysaccharide (AIP) extracted from cucumber peel were investigated. AIP was composed of 14.54% crude protein, 1.04% crude lipid, 13.74 % crude ash, 9.1% soluble dietary fiber, and 41.2% insoluble dietary fiber. AIP showed low bulk density (0.18 g/mL) and water-holding capacity (6.39 g/g), and high oil-holding capacity (3.96 g/g). Pectic substance fractions [water-soluble pectic substance (WSP), ethylenediaminetetraacetic acid-soluble pectic substance (ESP), and alkali-soluble pectic substances (ASP)] and hemicellulose fractions [1 M KOH-soluble hemicellulose (KHP1) and 4 M KOH-soluble hemicellulose (KHP4)] were obtained from sequential chemical fractionation of AIP. WSP showed higher total sugar contents than total uronic acid contents, whereas opposite results were observed in ESP and ASP. Molecular weight distributions of three pectic substance fractions were in order of ASP>ESP>WSP. Ion exchange chromatogram pattern of WSP was different from those of ESP and ASP. Major component of WSP was fraction eluted by 0.05 M ammonium acetate buffer, whereas that of ESP and ASP was fraction eluted by 0.2 M NaOH. WSP and ASP showed growth-promoting activities against Lactobacillus brevis, Bifidobacterium bifidum, and B. longum, whereas B. bifidum and B. longum for ESP. KHP1 and KHP4 fractions had significant growth-promoting activities against B. bifidum.

Preparation and Properties of Sulfonated Poly(ether ether ketone) (SPEEK) Electrospun Nanofibrous Ion-exchange Membrane for PEMFC (PEMFC용 설폰화 Poly(ether ether ketone) (SPEEK) 전기방사 나노섬유 이온교환막의 제조 및 특성)

  • Kwak, Noh-Seok;Choi, Eun-Jung;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.36 no.2
    • /
    • pp.155-162
    • /
    • 2012
  • Sulfonated poly(ether ether ketone) (SPEEK) nanofibers were prepared by electrospinning. The nanofibrous membrane for polymer electrolyte membrane fuel cell (PEMFC) was fabricated by compression molding. The maximum degree of sulfonation was 95% and the initial thermal degradation temperature was $280^{\circ}C$ and it's value was lower than that of PEEK. The contact angle of SPEEK increased with decreasing the degree of sulfonation. The optimum voltage, flow rate, tip to collector distance (TCD) and concentration of electrospinning conditions were 22 kV, 0.3 mL/hr, 15 cm, and 23 wt%, respectively. The average nanofibrous diameter was 47.6 nm. The water uptake and ion exchange capacity of SPEEK nanofibrous membrane increased with increasing the sulfonation time and the amount of sulfonating agent. The electrical resistance and proton ionic conductivity of SPEEK membrane increased with decreasing and increasing the sulfonation time, respectively. Their values were 0.58~0.06 ${\Omega}{\cdot}cm^2$and 0.099 S/cm.

Physicochemical Properties and Cu Sorption of the Biochar Derived from Woody Biomass (목질계 바이오매스에서 생산된 바이오차의 물리화학적 특성 및 Cu 흡착제거 특성)

  • Park, Yi-Kyung;Yang, Jae-Kyu;Na, Jung-Kyun;Jung, Jong-Am;Jung, Hyung-Jin;Kang, Chang-Hwan;Ko, Kyung-Min;Kim, Wan-Hee;Chang, Yoon-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.2
    • /
    • pp.54-61
    • /
    • 2012
  • In this study, the adsorption of $Cu^{2+}$ from aqueous solution by the biochar derived from woody biomass at different pyrolysis temperatures has been investigated. The woody biomass wastes used in this study were branch of willow ($Salix$ $koreensis$ $Andersson$) and bark of chestnut ($Castanea$ $crenata$ $var.$ $dulcis$). Three biochar samples prepared by heating each biomass at temperature of $300^{\circ}C$, $500^{\circ}C$, and $700^{\circ}C$were tested for the adsorption capacity of Cu. Also the physicochemical properties of the developed biochars were studied using different characterization techniques such as FT-IR, SEM, BET surface area, and cation exchange capacity (CEC). The adsorption of Cu could be well described by Langmuir model for both willow and chestnut biochars with $R^2{\geq}0.98$. The maximum adsorption capacities of the biochar produced at $700^{\circ}C$ from the Langmuir equation were found to be 12.5 mg $g^{-1}$ and 16.9 mg $g^{-1}$ for willow and chestnut, respectively. Chestnut biochar was found to interact more effectively with the active sites available for Cu, resulting higher removal of Cu(II) than wiloow biochar. Ion exchange and surface complexation found to be the main mechanisms involved in the adsorption process. This study demonstrated the feasibility of the biochars derived from woody biomass to be as a low-cost potential adsorbent for heavy metals as Cu(II) removal in aquatic system.

Studies on the Separation of Immunoglobulin and Immunological Response from Korean Native Cattle (한우초유중 Ig의 분리 ${\cdot}$ 정제 및 면역 반응에 관한 연구)

  • Baick, Seung-Cheon;Kim, Yong-Hwi;Shin, Je-Ho;Yu, Je-Hyeon
    • Journal of Dairy Science and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.1-9
    • /
    • 1997
  • This study was conducted to efficiently separate the Ig from Korean native cattle colostrum and to utilize them as an immunogen for the production of antibodies aginst rabbit. The results obtained were as follows : 1. About 84% of Ig G could be separated from Korean native cattle colostrum by·gel filtration using Superose 12 column on HPLC. The separation profile of Korean native cattle colostral immunoglobulin was similar that of Holstein colostral Ig. 2. Separation of Korean native cattle colostral Ig by anion exchange chromatography using Mono Q column on HPLC was poor resolution chromatographic pattern. 3. Hi-Trap Protein G column showed better results than the Protein A Sepharose CL-4B column in the Ig G binding capacity from Korean native cattle colostral Ig. 4. Protein G Sepharose Fast Flow system resulted in higher Ig g binding capacity as the industrial size scale-up approach. 5. Sufficient titer reaction of antibody to Korean native cattle colostral Ig G was confirmed by ELISA.

  • PDF

Characterization of Natural Zeolite and Study of Adsorption Properties of Heavy Metal Ions for Development of Zeolite Mine (제올라이트 광산개발을 위한 천연 제올라이트의 특성 분석 및 중금속 이온 흡착 특성 연구)

  • Kim, Hu Sik;Kim, Young Hun;Baek, Ki Tae;Lim, Woo Taik
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.299-308
    • /
    • 2015
  • The six natural zeolites collected in Pohang area, Kyungsangbuk-do, Korea, were characterized by XRD, XRF, DTA, TGA, and CEC analysis. The primary species of these zeolite are modenite, albite, and quarts in Kuryongpo-A (Ku-A), Kuryongpo-B (Ku-B), Kuryongpo-C (Ku-C), Donghae-A (Dh-A), Donghae-B (Dh-B), and Donghae-C (Dh-C) samples. The XRF analysis showed that the six zeolites contain Si, Al, Na, K, Mg, Ca, and Fe. Cation exchange capacity of Kuryongpo-C (Ku-C) zeolite was the highest compared to other zeolites. The capabilities of removing heavy metal ions such as $Pb^{2+}$, $Cd^{2+}$ and $Cu^{2+}$ were compared. The effect of reaction time in removing heavy metal ions was studied. The experimental results showed that the efficiency of removal was low for $Pb^{2+}$, $Cd^{2+}$ and $Cu^{2+}$ ions. These may be caused by the low content of zeolite in the six natural zeolites. This indicates that the adsorption capacity roughly tends to depend on the zeoite contents, ie., the grade of zeolite ore.