• Title/Summary/Keyword: IoT Authentication

Search Result 192, Processing Time 0.036 seconds

Efficient Authentication for Convergence of IoT and Mobile IP (사물인터넷과 모바일 IP의 융합을 위한 효율적 인증 메커니즘)

  • Lee, YunJung;Cho, Jungwon;Kim, Chul-Soo;Lee, Bong-Kyu
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.6
    • /
    • pp.13-18
    • /
    • 2019
  • This paper proposes efficient and secure two-way authentication protocol for binding update messages between mobile devices and home agents / correspondent nodes in IoT and Mobile IPv6 (MIPv6) environments with limited computing power and resources. Based on the MIPv6 message exchange, the proposed protocol satisfies both the authentication and the public key exchange optimized for both sides of the communication with minimum modification. In the future, we will carry out a performance analysis study by implementing the proposed protocol in detail.

Hardware Interlocking Security System with Secure Key Update Mechanisms In IoT Environments (IoT 환경에서의 안전한 키 업데이트를 위한 하드웨어 연동 보안 시스템)

  • Saidov, Jamshid;Kim, Bong-Keun;Lee, Jong-Hyup;Lee, Gwang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.4
    • /
    • pp.671-678
    • /
    • 2017
  • Recent advances in Internet of Things (IoT) encourage us to use IoT devices in daily living areas. However, as IoT devices are being ubiquitously used, concerns onsecurity and privacy of IoT devices are getting grown. Key management is an important and fundamental task to provide security services. For better security, we should restrict reusing a same key in sequential authentication sessions, but it is difficult to manually update and memorize keys. In this paper, we propose a hardware security module(HSM) for automated key management in IoT devices. Our HSM is attached to an IoT device and communicates with the device. It provides an automated, secure key update process without any user intervention. The secure keys provided by our HSM can be used in the user and device authentications for any internet services.

A Study on AES-based Mutual Authentication Protocol for IoT Devices (사물인터넷 디바이스를 위한 AES 기반 상호인증 프로토콜)

  • Oh, Se-Jin;Lee, Seung-Woo
    • Journal of Industrial Convergence
    • /
    • v.18 no.5
    • /
    • pp.23-29
    • /
    • 2020
  • The Internet of things (IoT) is the extension of Internet connectivity into various devices and everyday objects. Embedded with electronics, Internet connectivity and other forms of hardware. The IoT poses significant risk to the entire digital ecosystem. This is because so many of these devices are designed without a built-in security system to keep them from being hijacked by hackers. This paper proposed a mutual authentication protocol for IoT Devices using symmetric-key algorithm. The proposed protocol use symmetric key cryptographic algorithm to securely encrypt data on radio channel. In addition, the secret key used for encryption is random number of devices that improves security by using variable secret keys. The proposed protocol blocked attacker and enabled legal deives to communicate because only authenticated devices transmit data by a mutual authentication protocol. Finally, our scheme is safe for attacks such as eavesdropping attack, location tracking, replay attack, spoofing attack and denial of service attack and we confirmed the safety by attack scenario.

Security Analysis of Remote Healthcare System in Cloud-based IoT Environment (클라우드 기반 IoT 환경의 원격 헬스케어 시스템에 대한 보안성 분석)

  • Kwon Jaemin;Hong Sewoong;Choi Younsung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.1
    • /
    • pp.31-42
    • /
    • 2023
  • As computer performance is leveled upward, the use of IoT systems is gradually expanding. Although IoT systems are used in many fields, it is true that it is difficult to build a safe system due to performance limitations. To overcome these limitations, many researchers have proposed numerous protocols to improve security issues. Among them, Azrour et al. except. We proposed a new efficient and secure authentication protocol for remote healthcare systems in a cloud-based IoT environment, and claimed that the new protocol could solve the security vulnerabilities of the existing protocols and was more efficient. However, in this paper, through the security analysis of the remote healthcare system in the cloud-based IoT environment proposed by Azrour et al., the protocol of this system was found to be vulnerable to Masquerade attack, Lack of Perfect Forward Secrecy, Off-line password guessing attack, and Replay attack.

Analysis of Security Vulnerability in U2U Authentication Using MEC in IoD Environment (IoD 환경에서 MEC를 활용한 U2U 인증에서 보안 취약점 분석)

  • Choi, Jae Hyun;Lee, Sang Hoon;Jeong, Ik Rae;Byun, Jin Wook
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.1
    • /
    • pp.11-17
    • /
    • 2021
  • Due to the recent development of the Internet of Things (IoT) and the increase in services using drones, research on IoD is actively underway. Drones have limited computational power and storage size, and when communicating between drones, data is exchanged after proper authentication between entities. Drones must be secure from traceability because they contain sensitive information such as location and travel path. In this paper, we point out a fatal security vulnerability that can be caused by the use of pseudonyms and certificates in existing IoD research and propose a solution.

Key-Agreement Protocol between IoT and Edge Devices for Edge Computing Environments (에지 컴퓨팅 환경을 위한 IoT와 에지 장치 간 키 동의 프로토콜)

  • Choi, Jeong-Hee
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.2
    • /
    • pp.23-29
    • /
    • 2022
  • Recently, due to the increase in the use of Internet of Things (IoT) devices, the amount of data transmitted and processed to cloud computing servers has increased rapidly. As a result, network problems (delay, server overload and security threats) are emerging. In particular, edge computing with lower computational capabilities than cloud computing requires a lightweight authentication algorithm that can easily authenticate numerous IoT devices.In this paper, we proposed a key-agreement protocol of a lightweight algorithm that guarantees anonymity and forward and backward secrecy between IoT and edge devices. and the proposed algorithm is stable in MITM and replay attacks for edge device and IoT. As a result of comparing and analyzing the proposed key-agreement protocol with previous studies, it was shown that a lightweight protocol that can be efficiently used in IoT and edge devices.

Design of Device Authentication Protocol Based on C-PBFT in a Smart Home Environment (스마트 홈 환경에서 C-PBFT 기반의 디바이스 인증 프로토콜 설계)

  • Kim, Jeong-Ho;Heo, Jae-Wook;Jun, Moon-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.550-558
    • /
    • 2019
  • As the scale of the Internet of Things (IoT) environment grows and develops day by day, the information collected and shared through IoT devices becomes increasingly diverse and more common. However, because IoT devices have limitations on computing power and a low power capacity due to their miniaturized size, it is difficult to apply security technologies like encryption and authentication that have been directly applied in the previous Internet environment, making the IoT vulnerable to security threats. Because of this weakness, important information that needs to be delivered safely and accurately is exposed to the threat of malicious exploitation, such as data forgery, data leakage, and infringement of personal information. In order to overcome this threat, various security studies are being actively conducted to compensate for the weaknesses in IoT environment devices. In particular, since various devices interact, and share and communicate information collected in the IoT environment, each device should be able to communicate with reliability. With regard to this, various studies have been carried out on techniques for device authentication. This study examines the limitations and problems of the authentication techniques that have been studied thus far, and proposes technologies that can certify IoT devices for safe communication between reliable devices in the Internet environment.

Authentication Mechanism of Devices in Smart Home Using Internet of Things (사물 인터넷망을 이용한 스마트 홈에서의 기기 인증 메카니즘)

  • Kim, Jung Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.258-259
    • /
    • 2017
  • Recently, as science and technology is very growing, wire and wireless communication is merged and interconnected. Therefore, advanced internet technology allow all kinds of communication to integrate with heterogeneous device and sensors. The representative example is smart home network based on internet of things. Communication surroundings under IoT services are more complex. Conventional encryption techniques can't provide to IoT application because of its limited resources such as small memory capacity and low computing power. In this paper, we analyzed authentication procedure between home gateway and node in sensor under smart home network.

  • PDF

The Access Control Platform of the IoT Service Using the CapSG (CapSG를 이용한 IoT 서비스 접근제어 플랫폼)

  • Kim, Jin-Bo;Jang, Deresa;Kim, Mi-Sun;Seo, Jae-Hyun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.9
    • /
    • pp.337-346
    • /
    • 2015
  • There is great need for efficient user rights management method to provide a flexible service on variety protocols, domains, applications of IoT environments. In this paper, we propose a IoT service platform with CapSG to provide efficient access control for IoT various services of the environment. CapSG uses a token including authentication and access rights to perform authentication and access control service entity providing services. In addition, the generated token for service management, delegation, revocation, and provides a function such as denied. Also, it provides functions such as generation, delegation, disposal and rejection for service token management. In this paper, it provides the flexibility and efficiency of the access control for various services require of the IoT because of it is available to access control specific domain service by using the token group for each domain and is designed to access control using specific service token of tokens group.

The Research on Blockchain-based Secure loT Authentication (블록체인 기반 사물인터넷 인증 연구)

  • Hong, Sunghyuck;Park, Sanghee
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.11
    • /
    • pp.57-62
    • /
    • 2017
  • With various sensors and communications capabilities, the Internet is growing larger as the internet can communicate with the Internet. Given the growing vulnerability of the internet market, the development of security and security is increasing, and the development of the internet is actively evolving and the development of the internet is actively being carried out. In particular, it is required to introduce lightweight and secure authentication schemes, especially those that are difficult to use due to the difficulty of using authentication schemes. Thus, the safety of the secure authentication system of the Internet is becoming very important. Therefore, in this thesis, we propose certification technologies on secure objects to ensure correct, safe communication in the context of the internet context.