• Title/Summary/Keyword: Inverted Pendulum System

Search Result 326, Processing Time 0.026 seconds

Hardware Implementation of an Intelligent Controller with a DSP and an FPGA for Nonlinear Systems (DSP와 FPGA를 이용한 지능 제어기의 하드웨어 구현)

  • 김성수
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.10
    • /
    • pp.922-929
    • /
    • 2004
  • In this paper, we develop control hardware such as an FPGA based general purposed intelligent controller with a DSP board to solve nonlinear system control problems. PID control algorithms are implemented in an FPGA and neural network control algorithms are implemented in a BSP board. An FPGA was programmed with VHDL to achieve high performance and flexibility. The additional hardware such as an encoder counter and a PWM generator can be implemented in a single FPGA device. As a result, the noise and power dissipation problems can be minimized and the cost effectiveness can be achieved. To show the performance of the developed controller, it was tested fur nonlinear systems such as a robot hand and an inverted pendulum.

Hybrid Fuzzy Logic Controller using Modulation Function (변조함수를 이용하는 하이브리드 퍼지 논리 제어기)

  • Lee, Pyeong-Gi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.4
    • /
    • pp.393-399
    • /
    • 2003
  • In this paper, a self-organizing fuzzy logic controller with hybrid structure is proposed. The structure of the proposed method is composed of a basic fuzzy logic controller and the FARMA SOC(Fuzzy Autoregressive Moving Average Self-organizing Controller). The self-organizing cntroller with hybrid structure has advantage over the FARMA controller as follows. The proposed controller improves poor performance due to the lack of I/O data to calculate predictive output. I executed some computer simulations on the regulation problem of an inverted pendulum system and compared the results of the proposed method with those of the FARMA SOC method.

  • PDF

Hybrid Fuzzy Control Systems with Look-Up Table for Good Performance (성능개선을 위한 룩업테이블 하이브리드 퍼지제어 시스템)

  • Lee, Pyeong-Gi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.3
    • /
    • pp.101-108
    • /
    • 2016
  • I propose a hybrid fuzzy controller with a look-up table to improve the performance of the FARMA(Fuzzy Auto-regressive Moving Average) fuzzy controller. The hybrid structure of the proposed method is composed of a fuzzy controller with a look-up table of the PD type and the FARMA fuzzy controller. The proposed method improves poor performance due to the lack of I/O data to calculate predictive output and shows robust performance over the FARMA fuzzy controller when a incorrect Dmax value is selected by trial and error. I executed some computer simulations on the regulation problem of an inverted pendulum system and compared the results with those of the FARMA fuzzy controller.

Design of a Fuzzy Model Based Reduced Order Unknown Input Observer for a Class of Nonlinear Systems (비선형계를 위한 퍼지모델 기반 감소차수 미지입력관측자 설계)

  • Lee, Kee-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.7
    • /
    • pp.1247-1253
    • /
    • 2008
  • A design method of a T-S fuzzy model based reduced order nonlinear unknown input observer(NUIO) is presented. The fuzzy NUIO is designed based on the parallel distributed compensation(PDC) concept. It consists of a number of the linear UIOs, each of which is designed for each local linear model in the T-S fuzzy model of a class of nonlinear systems. The fuzzy NUIO provides not only the state estimates insensitive to the unknown inputs, for example, disturbances and faults etc., but also the estimates of the unknown inputs. Therefore, It can be employed in the state feedback control and disturbance rejection control of a class of nonlinear systems with unknown disturbances. It also applied to the robust residual generation for the fault detection and isolation systems and to the design of fault tolerant control systems. As an example, the NUIO is applied to an inverted pendulum system to show the state and disturbance estimation performance and to illustrate the fuzzy reduced order NUIO design method.

Real-Time Optimal Control for Nonlinear Dynamical Systems Based on Fuzzy Cell Mapping

  • Park, H.T.;Kim, H.D.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.388-388
    • /
    • 2000
  • The complexity of nonlinear systems makes it difficult to ascertain their behavior using classical methods of analysis. Many efforts have been focused on the advanced algorithms and techniques that hold the promise of improving real-time optimal control while at the same time providing higher accuracy. In this paper, a fuzzy cell mapping method of real-time optimal control far nonlinear dynamical systems is proposed. This approach combines fuzzy logic with cell mapping techniques in order to find the optimal input level and optimal time interval in the finite set which change the state of a system to achieve a desired obiective. In order to illustrate this method, we analyze the behavior of an inverted pendulum using fuzzy cell mapping.

  • PDF

Experimental Studies of Balancing Control of a Two-wheel Mobile Robot for Human Interaction by Angle Modification (이륜 구동 로봇의 균형 각도 조절을 통한 사람과의 상호 제어의 실험적 연구)

  • Lee, Seung Jun;Jung, Seul
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.2
    • /
    • pp.67-74
    • /
    • 2013
  • This paper presents interaction force control between a balancing robot and a human operator. The balancing robot has two wheels to generate movements on the plane. Since the balancing robot is based on position control, the robot tries to maintain a desired angle to be zero when an external force is applied. This leads to the instability of the system. Thus a hybrid force control method is employed to react the external force from the operator to guide the balancing robot to the desired position by a human operator. Therefore, when an operator applies a force to the robot, desired balancing angles should be modified to maintain stable balance. To maintain stable balance under an external force, suitable desired balancing angles are determined along with force magnitudes applied by the operator through experimental studies. Experimental studies confirm the functionality of the proposed method.

Fuzzy Controller Design by Means of Genetic Optimization and NFN-Based Estimation Technique

  • Oh, Sung-Kwun;Park, Seok-Beom;Kim, Hyun-Ki
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.3
    • /
    • pp.362-373
    • /
    • 2004
  • In this study, we introduce a noble neurogenetic approach to the design of the fuzzy controller. The design procedure dwells on the use of Computational Intelligence (CI), namely genetic algorithms and neurofuzzy networks (NFN). The crux of the design methodology is based on the selection and determination of optimal values of the scaling factors of the fuzzy controllers, which are essential to the entire optimization process. First, tuning of the scaling factors of the fuzzy controller is carried out, and then the development of a nonlinear mapping for the scaling factors is realized by using GA based NFN. The developed approach is applied to an inverted pendulum nonlinear system where we show the results of comprehensive numerical studies and carry out a detailed comparative analysis.

Compensation of Networked Control Systems using LMI-Based H_$\infty$Optimization Method

  • Ho-Jun Yoo;Myung-Eui Lee;Oh-Kyu Kwon
    • KIEE International Transaction on Systems and Control
    • /
    • v.2D no.2
    • /
    • pp.72-77
    • /
    • 2002
  • Delay and noise in networked control systems are inevitable and can degrade system performance or stability This paper propose a compensation method for networked control systems with network-induced delay and noise using LMI(linear matrix inequality)-based H_\infty optimization. The H_\infty optimization methods have adapted to account for both the time delay and noise effects. Some simulations applied to inverted pendulum with networked control show that the proposed method works well.

  • PDF

Design of Takagi-Sugeno Fuzzy Controllers for Nonlinear Systems using LMIs (선형행렬부등식을 이용한 비선형 시스템의 TS 퍼지 제어기 설계)

  • Kim, Jin-Sung;Choy, Ick;Yoon, Tae-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2398-2400
    • /
    • 2000
  • In this paper, we consider multi-objective synthesis of fuzzy controllers for a widely used special class of the Takagi-Sugeno(TS) fuzzy systems. We propose a new fuzzy controller utilizing the strategy of rescaling and show that synthesis of the proposed controllers satisfying multiple design objectives can be reduced to a simple linear matrix inequality(LMI) problem. Finally, an application to an inverted pendulum on a cart is presented to illustrate the validity of the proposed method.

  • PDF

The Sliding Controller designed by the Indirect Adaptive Fuzzy Control Method (간접 적응 퍼지 제어기법에 의한 슬라이딩 제어기 설계)

  • Choi, Chang-Ho;Yim, Wha-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2283-2286
    • /
    • 2000
  • Sliding control is a powerful approach to controlling nonlinear and uncertain systems. Conventional sliding mode control suffer' from high control gain and chattering problem. also it needs mathematic! modeling equations for control systems. A Fuzzy controller is endowed with control rules and membership function that are constructed on the knowledge of expert, as like intuition and experience. but It is very difficult to obtain the exact values which are the membership function and consequent parameters. In this paper, without mathematical modeling equations, the plant parameters in sliding mode are estimated by the indirect adaptive fuzzy method. the proposed algorithm could analyze the system's stability and convergence behavior using Lyapunov theory. so sliding modes are reconstructed and decreased tracking error. moreover convergence time took a short. An example of inverted pendulum is given for demonstration of the robustness of proposed methodology.

  • PDF