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Compensation of Networked Control Systems using
LMI-Based H.. Optimization Method

Ho-Jun Yoo, Myung-Eui Lee and Oh-Kyu Kwon

Abstract - Delay and noise in networked control systems are inevitable and can degrade system performance or stability. This
paper propose a compensation method for networked control systems with network-induced delay and noise using LMI(linear ma-
trix inequality)-based H.. optimization. The H.. optimization methods have adapted to account for both the time delay and noise
effects. Some simulations applied to inverted pendulum with networked control show that the proposed method works well.

1. Introduction

Recently network systems have become widely used,
and some considerable attention has been directed the net-
worked control system (NCS). The NCS is defined as the
feedback control system that the control loops are closed
through a real-time network. In an NCS, the inevitable
network-induced delays degrade the system performance
and can potentially cause instability. NCSs are used in
communication networks and network-induced noise in the
communication line is inevitable. Current control research
focuses on developing appropriate controllers to compen-
sate for network-induced delay. However, design consid-
erations have been often overlooked as a way of compen-
sating for network-induced noise.

The network-induced delays are time-varying and possi-
bly stochastic dynamics of the traffic. Isle [5] has sug-
gested the use of stochastic Lyapunov functions for stabil-
ity analysis of systems with random time-varying delays.
By making the buffers longer than the worst- case delay,
the network-induced delay can be regarded as time-in-
variant. Luck and Ray [6] regard a network-induced delay
as constant via a buffering procedure.

The stability and performance analyses of NCSs are re-
ferred to in several papers, but compensatory designs of
NCSs are only beginning. Zhang [8] has proposed a current
state estimator method to compensate for a stochastic net-
work-induced delay. Luck and Ray [6] present an ob-
server-based compensatory design that is a constant delay

method. However, they have considered only delays and

no network-induced noises.
In this paper, an LMI-based H.. optimization for an NCS
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is proposed. The control system analysis and design using
H.. optimizations is robust to external noise or perturba-
tions. Therefore, the main contribution of this paper is to
propose a controller design for a networked control system;
this design considers both network-induced delays and
noise.

2. NCS Description

An NCS block diagram with network-induced delay is
shown in Fig. 1. In this NCS, the whole closed-loop system
consists of a continuous-time plant and a discrete-time
controller. A setup is considered that has time-driven sen-
sors that sample the plant outputs periodically at sampling
instant. In additions, an event-driven controller and actua-
tor, which can be implemented by an external event inter-
rupt mechanism, calculates the signal as soon as the data
arrives.
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Fig. 1 Block diagram of NCS with network-induced delay

Let us consider a continuous-time plant with measure-
ment noise,

x(t) = Ax(¢) + Bu(?) D

y(t)=Cx(t) + D, w(t)> 2
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and a discrete-time controller given as follows:
u(kh) = Kx(kh) s 3

where xe R”, ue R", ye R?,and A, B, C, D,, and K
are of compatible dimensions.

There are two sources of delay from the network: sen-
sor-to-controller delay 7 .. and controller-to-actuator delay
T .- For time-invariant controllers, the sensor-to-controller
delay and controller-to-actuator delay can be lumped to-
gether as T=7,+7,, [4]. In Luck and Ray [6], the net-
worked delay T is made time-invariant by the introduc-
tion of buffers at the controller and actuator nodes. By
making these buffers longer than the worst-case delay time,
the transfer time can be considered constant.

A periodic sampled signal in a plant sensor is passed
through a communication network. This signal arrives at a
buffer with a different time due to the networks time-
varying delays. Assume that if the sensor-to-buffer delays
are measurable and the upper bound 7 (7 =max7,) I8
known beforehand using the time-stamping method [7],
then the controller input signal (after buffering) could be
made to be a constantly delayed signal. This signal trans-
mission procedure is shown in Fig. 2.
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Fig. 2 Timing diagram in NCSs with buffers

If the delay 7 1is less than one sampling period £, then the
network closed-loop system equation can be written as

u(tt) = Kx(t = 1) + w(r) 4

x(t) = Ax(t)+Bu(t+) (5)
= Ax(t)+ BKx(t —T)+ Bw(t)

y(@) =Cx(#) + D, w(t) (6)

where y(¢") is piecewise continuous and its value changes
only at kh+ 1. The effect of network-induced noise is de-
scribed by w(z), which has unknown, finite-energy, sto-
chastic properties. Assume that the network-induced dis-
turbances and the measurement noises are uncorrelated, i.e.

D,B" =0.

3. Discrete Time H.. Controller Design
for an NCS

Sampling the network closed-loop system in Egs.(4) —
(6) with period #, the discrete-time linear system with time
delay 7 is obtained as follows [1]:

x(kh+ h) = @ x(kh) + [T, (r) Kx(kh) )

+ T, (T)Kx(kh —~ h)]+ T w(kh)

y(kh) = Cx(kh) + D, w(kh) ®
where
©=e", T, =j"e'“Bds €)
0

L@ =["e*Bds» T,@)={ ¢"Bds

x(kh)=0, k<0,  x(0)=x, (10
The proposed state feedback law is

u(kh) = Kx(kh) - (11

When the non-delayed terms @ and T, in Eq.(7) are
substituted by @ c the closed-loop system from w(kh)
to z(kh) is given by

x(kh+ h) = @ x(kh) + T,(t) Kx(kh— k) + T w(kh) (12)

y(kh) = Cx(kh) + D, w(kh) 13)
where
& =0+K- (14)

Theorem 1. Under the discrete-time linear system with
delay described by Eqgs.(7) — (10), if there exist posi-
tive-definite matrices P and R and a given y >0 sat-
isfying the inequality
I, T 0

1 w

-p D,
®! K'RK-P 0 0 (7

r7 0 -R 0 0 |<0,
r’ 0 0 y*1 DI
0 C 0 D, -I (15)

then the system in Eqs.(12) — (13) is quadratically stable
with an H.. norm bound y by the controller (11).
Proof. First, we define a Lyapunov candidate as

V (x(kh)) = x7 (k) Px(kh) + x” (kh— )K" RKx(kh — k). (16)

Assuming the zero-input system, i.e., w(kk) =0, the dif-
ference of the Lyapunov functional is

AV, =V (x(kh+ h)) =V (x(kh)) 7

[ xtkh) TH x(kh)
T Kx(kh=h) | | Kx(kh—h) (18)
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where

e [cbipcbk +K"RK —P

DLPT, |, (19)
I/ PO,

I7PT,-R

which ensures the quadratic stability of the closed-loop
system in Eqgs.(12) — (13). Next, an initial condition of zero
and take the following performance index:

T = Y0y (kh) y(kh) =7 (khyw(kh), (20)
k=0

For any non-zero w(kh)e L,[0,),

J< i[ ¥ (kh) y(kh) =y *w" (kiyw(kh) + AV, ].

k=0

Let S(kh)=[x"(kh) x"(kh—R)KT w'(kk)]; then
1<367Q8
k=0

where

DL PO,+K'RK—-P+C'C
Q= PP,
DIC+ITPo
!PT, C'D,+®, PT,
I7PT,-R I7PT, <0.
I’'pT, DD —-y’I+T'PT, 03}

This inequality (21) implies that ”y(kh)”2 Sy]]w(kh)]]z for
any non-zero w(kh)e L,[0,) . Therefore, the system is
quadratically stable with H.. norm bound y by the con-
troller (11). Using Schur complements [2], the inequality is
shown to be equivalent to Eq.(15).

In Theorem 1, the inequality in Eq.(15) is not an LMI
structure due to the K7RK term in the 2 X 2 element. So
this inequality needs an augmented linear structure.

Theorem 2. For the discrete time-delay system Eq.(7) —
(10), there exist symmetric positive-definite matrices
P, R,, and R, such that the matrix inequality in Eq.(15)
holds if and only if there exist positive-definite matrices
0 and § and a matrix M such that the following LMI
is satisfied:

~Q+TSTT ®Q+I,M T, 0 0
QT +MTT  -Q 0 QcT M7
7 0 -yl DI 0 [<O.
0 cQ D, -1 0
0 M 0 0 -5 (22)

Furthermore, if the matrix inequality in Eq.(22) has a
feasible solution, then the system in Egs.(12) — (13) is
quadratically stable with an H.. norm bound y. Let

M:KP*, Q:P_l, S:R_l. (23)

Proof. It follows from the Schur complements [2] and
some change of variables that Eq.(15) is equivalent to,

r 7

-, I, T, 0 0
® -P 0 0 ¢ K’
I 0 -k 0 0 0| 0
T o o0 -y DI 0
0o ¢ o0 D, -1 0
L0 kXK 0 0 0 -R'] 24
-P'+RIy ®, I, 0 0
o7 -P 0 (" K
o I’ 0 -y DI o0 |<O.
0 cC D, -1 0
0 K 0 0 -RrR' (25)

Pre- and post-multiplying both sides of the inequality in
Eq.(25) by

I 0 0 00

0o P 00O

0 0 I 0 of

0O 0 01 0

0 0 0 0 1

we have
-P?+IRTTT @, P! T, 0 0
PO -p 0 P'ct PKT

r’ 0 -y D! 0 |<0.
0 CP' D, -1 0
0 Kp™! 0 0 -R™ (26)

Changing the variables to M =KP™, Q=p", and
§ = R™, the inequality (26) is converted to Eq.(22).

Inequality (22) is an LMI in terms of Q, M, and S. The
state feedback controller can be calculated after finding the
LMI solution. The proposed quadratically stable controller
is

K=MQ™". 27

Using MATLAB’s LMI Toolbox, the solutions can be
easily obtained because Eq.(22) is an LMI in terms of vari-
ables.

Theorem 2 provides an LMI condition in Eq.(22) for the
H.. controller, which guarantees the H.. norm bound y of
the transfer function T,,- Solving the following minimiza-
tion problem, we can obtain the H., controller, which
minimizes the H.. norm bound :

Minimize y (28)
M.0.8

subject to
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~Q+TSIT ®Q+T,M T, 0 O
Q" + M'T] -0 0 QCc™ MT"
rr 0 -y DI 0 |<0.
0 cQ D, -1 0
0 M 0 0 -5 (29)

The solution of the minimization problem in Eqs.(28) —
(29) gives the delay independent H.. controller that guar-
antees the stability and the H.. norm bound ¥.

4. Simulation for Inverted Pendulum
in NCSs

Let us consider the simplified inverted pendulum
experiment model with a network delay 7. The linearized
equations of the inverted pendulum dynamics are derived
as follows :

170 0 1 0Ty 0
al 10 0 0 1fg 0
i[7]o -z o0 o)k &
a] [0 =5 0 ofal [-ak

where x is the position of the cart, & is the angle of the
rod, Fis the input force to the cart, m, is the mass of the
rod, m, is the mass of the cart, and /, is the center of gravity
of the rod. To convert to a voltage input, we derive the re-
lationship

K K
=_mley
Rr ™ RF

2 2
KK

F X.

Substituting this into the matrix equation, we have

X 0 0 1 O] x 0

a 0 O 0 1o 0 .
L= + \
X 0 —-45 -168 O] x 38 |'"
[¢1 0 469 553 O0fa] |-124

So, the values of matrices are given by

0 0 1 0 0
1o o o 1}, | o |,
A=l0 _a5 -168 o] 27| 38

|0 469 553 0 —-12.4

1 000 0

010 0], 0|.

C= D =

0010 * 1o

0 0 0 1 0

An LQR controller that fails to consider delay 7 may
result in an unstable closed-loop system due to the effect of
the network-induced delay.

The conventional LQR controller is

K, . =[17.1696 681903 19.6588 8.1552] (30)

LOR —

which was obtained with a choice of the weighting matri-
ces

025 0 0 0

0 2 0 0|, R=0.0003.
2= 6% 0 0 0

0 00 0

There is no doubt that this LQR controller stabilizes the
system without delay. However, when applied to a system
delay, the closed-loop system is unstable as shown in Fig.
3. In this simulation, sampling time and network delay are
assumed tobe =0.03 and 7=0.015, respectively.
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Fig. 3 Response of the conventional LQR controller

On the other hand, our objective is the design of a dis-
crete-time H.. controller for this NCS such that the corre-
sponding bound is minimized. Such a design is found using
the LMI-toolbox in MATLAB [3]. The optimal solution is
given by

126.9271 210.3351 86.9217 31.0241
210.3351 1601.3880 506.7649 197.1137

86.9217 506.7649 175.7100 66.5726
31.0241 197.1137 66.5726 26.8768
R=0.0614.

By Theorem 2, the proposed H.. controller is given by
K =[4.3914 48.5885 16.5855 7.4715]. (31)
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Using the control law in Eq.(31), we have the simulation
results shown in Fig.4, which indicates that the proposed
method works well.
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Fig. 4 Response of the proposed H.. controller

5. Conclusion

An LMI-based H., controller for an NCS with net-
worked-induced delay and noise has been proposed. In the
proposed method, the controller is designed to account for
both delays and noises. The network-induced delays are

assumed to be constant using buffers. To show the effec-

tiveness of the proposed control scheme, some simulations
are performed and application to the inverted pendulum
model with an NCS shows that it works well.

In this paper, delays are assumed to be less than the sam-
pling period. This short-delayed NCS can be solved using
the proposed delay-independent H.. controller. However, if
we have a control delay larger than the sampling period,
the proposed methods cannot compensate for the NCS.
One possibility could be to use a stochastic delayed model.
A proper delay-dependent H.. controller can be designed
for these systems.
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