• Title/Summary/Keyword: Inverted Pendulum

Search Result 463, Processing Time 0.026 seconds

Stabilization Control for Limit Cycle of an Inverted Pendulum System

  • Tajima, Takeshi;Ishii, Chiharu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.507-507
    • /
    • 2000
  • In this paper, a kind of limit cycle of an inverted pendulum system is discussed. We propose a stabilization control law for such a limit cycle of an inverted pendulum system that the pendulum rotates periodically. Besides, the stabilization control law is extended so as to ensure not only stability of the limit cycle but also an L$_2$-gain disturbance attenuation in the presence of modeling error and viscosity friction.

  • PDF

Balancing and Position Control of an Circular Inverted Pendulum System Using Self-Learning Fuzzy Controller (자기학습 퍼지제어기를 이용한 원형 역진자 시스템의 안정화 및 위치 제어)

  • 김용태;변증남
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.172-175
    • /
    • 1996
  • In the paper is proposed a hierarchical self-learning fuzzy controller for balancing and position control of an circular inverted pendulum system. To stabilize the pendulum at a specified position, the hierarchical fuzzy controller consists of a supervisory controller, a self-learning fuzzy controller, and a forced disturbance generator. Simulation example shows the effectiveness of the proposed method.

  • PDF

Implement of the inverted pendulum system of cart type via PID control method (카트형 역진자 시스템에 대한 PID제어)

  • Cho, Hyung-Min;Kim, Min-Soo;Dang, Hyo-Jin;Lee, Seung-Hoon;Park, Myung-Jin;Kwon, Oh-Min
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.85-86
    • /
    • 2015
  • This paper is to study the inverted pendulum system of cart type by using the method of PID control. This system is that inverted pendulum maintain a constant balance from unstable state by moving a cart. It is controlled via the PID controller. PID controller is proposed to maintain a constant balance for nonlinear system such as the inverted pendulum system so PID control is widely used in the industrial field because of superior control performance, easy implementation and relatively simple structure. To design this system, it consist of Encorder and DC motor. Encorder is used to read the angle of the pendulum and DC motor is used to change the angle. We can verify results of experiment through the Matlab simulator via the inverted pendulum system of cart type.

  • PDF

The $H_2/ H_\infty$ control of inverted pendulum system using linear fractional representation (도립진자 시스템에 선형 분수 표현법을 이용한 $H_2/ H_\infty$ 제어)

  • 곽칠성;최규열
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.4
    • /
    • pp.875-885
    • /
    • 1999
  • This paper presents an application of LMI-based techniques to the mixed $H_2/ H_\infty$ control of an inverted pendulum. The linear model of the inverted pendulum represented by an LFR(Linear Fractional Representation) model of uncertainties is derived. Considered uncertainties are three nonlinear components and a parameter uncertainty Augmenting the LFR model by adding weighting functions, we get a generalized plant, for which we design a mixed $H_2/ H_\infty$ controller using the LMI technique. To evaluate control performances and robust stability of the mixed $H_2/ H_\infty$ controller designed, we compare it with the $ H_\infty$controller through the simulation and experiment. The mixed $H_2/ H_\infty$ controller shows the better control performances and robust stability than the $H_\infty$controller in the sense of pendulum angle.

  • PDF

A Implementation of an Inverted Pendulum with Centrifugal Force using the NonLinear Sliding Mode Contrl (비선형 슬라이드 모드 제어를 적용한 원심력을 갖는 도립진자 제어기의 구현)

  • 황윤호;원태현;이만형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.606-609
    • /
    • 1995
  • To stabilize a satellite, a spin stabilization method is used for attitude control. The spin stabilization uses the centrifugal force of a pendulum damper which is tilted long boom, to stabilize the unstable satellite. In this paper, an inverted pendulum system is implemented which is similar to the spin stabilization method. Study on the velocity of the rotation axis and the inverted pendulum's angle stability is shown. We designed a controller using a 32bit TMS320C31 DSP for the CPU and also performances by PLD control and Sliding Mode Control is compared.

  • PDF

Stabilization Control of Inverted Pendulum by Self tuning Fuzzy Inference Technique (자기동조 피지추론 기법에 의한 도립진자의 안정화 제어)

  • Shim, Young-Jin;Kim, Tae-Woo;Lee, Oh-Keol;Park, Young-Sik;Lee, Joon-Tark
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.83-85
    • /
    • 1997
  • In this paper, a self-tunning fuzzy inference technique for stabilization of the inverted pendulum system is proposed. The facility of this self-tunning fuzzy controller which has swing-up control mode and a stabilization one, moves a pendulum in an initial natural stable equilibrium point and a cart in arbitrary position, to an unstable equilibrium point and a center of rail. Specially, the virtual equilibrium point(${\phi}_{VEq}$) which describes functionally considers the interactive dynamics between a position of cart and a angle of inverted pendulum is introduced. And comparing with the convention optimal controller, the proposed self-tunning fuzzy inference structure made substantially the inverted pendulum system robust and stable.

  • PDF

Stabilizing Inverted Pendulum System Using Fuzzy Controller Based on State Variables Combination (상태변수 조합 퍼지 제어기를 이용한 도립진자 시스템의 안정화)

  • Lee, Yun-Hyung;Kim, Jong-Phil;Jin, Gang-Gyoo;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1104-1110
    • /
    • 2012
  • The inverted pendulum system is a common, interesting control problem that involves many basic elements of control theory. In the early, controls of stabilization for the inverted pendulum system were used classical methods like PD, PID controller. In recently, however, control methods based on modern and intelligent control theory are widely applied. The fuzzy logic controller which is often used in nonlinear control is a little too hard to design due to increasing fuzzy rules rapidly if the given system like inverted pendulum has many state variables. Also, in case the state variables are divided into two parts, two fuzzy controllers are needed in the control system. In this paper, the authors propose FCSC(Fuzzy Controller based on State variables Combination) that reorganized into two new signals depending on the physical meaning of the four state variables of the inverted pendulum system. The proposed method is applied to the inverted pendulum system and simulations are accomplished to illustrate the control performance.

A Mixed H2/H State Feedback Controller Based on LMI Scheme for a Wheeled Inverted Pendulum running on the Inclined Road (경사면을 주행하는 차륜형 역진자를 위한 선형행렬부등식 기반 혼합 H2/H 상태피드백 제어기 설계)

  • Lee, Se-Han;Rhee, Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.5
    • /
    • pp.617-623
    • /
    • 2010
  • In this research an LMI based mixed $H_2/H_{\infty}$ controller for a Wheeled Inverted Pendulum is designed and a numerical simulation of that is carried out. The Wheeled Inverted Pendulum is a kind of an inverted pendulum that has two equivalent points. To keep that the naturally unstable equivalent point, a controller should control the wheels persistently. Dynamic equations of the Wheeled Inverted Pendulum are derived with considering inclined road that is one of the representative road conditions. A Linear Matrix Inequality method is used to construct a controller that is able to stabilize the Wheeled Inverted Pendulum with considering the inclined road condition aggressively. Various numerical simulations show that the LMI based controller is doing well on not only flat road but also inclined road condition.

A Study on Pose Control for Inverted Pendulum System using PID Algorithm (PID 알고리즘을 이용한 역 진자 시스템의 자세 제어에 관한 연구)

  • Jin-Gu Kang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.400-405
    • /
    • 2023
  • Currently, inverted pendulums are being studied in many fields, including posture control of missiles, rockets, etc, and bipedal robots. In this study, the vertical posture control of the pendulum was studied by constructing a rotary inverted pendulum using a 256-pulse rotary encoder and a DC motor. In the case of nonlinear systems, complex algorithms and controllers are required, but a control method using the classic and relatively simple PID(Proportional Integral Derivation) algorithm was applied to the rotating inverted pendulum system, and a simple but desired method was studied. The rotating inverted pendulum system used in this study is a nonlinear and unstable system, and a PID controller using Microchip's dsPIC30F4013 embedded processor was designed and implemented in linear modeling. Usually, PID controllers are designed by combining one or two or more types, and have the advantage of having a simple structure compared to excellent control performance and that control gain adjustment is relatively easy compared to other controllers. In this study, the physical structure of the system was analyzed using mathematical methods and control for vertical balance of a rotating inverted pendulum was realized through modeling. In addition, the feasibility of controlling with a PID controller using a rotating inverted pendulum was verified through simulation and experiment.