DOI QR코드

DOI QR Code

A Mixed H2/H State Feedback Controller Based on LMI Scheme for a Wheeled Inverted Pendulum running on the Inclined Road

경사면을 주행하는 차륜형 역진자를 위한 선형행렬부등식 기반 혼합 H2/H 상태피드백 제어기 설계

  • 이세한 (경남대학교 기계자동화공학부) ;
  • 이상용 (경남대학교 컴퓨터공학부)
  • Received : 2010.03.03
  • Accepted : 2010.07.24
  • Published : 2010.10.25

Abstract

In this research an LMI based mixed $H_2/H_{\infty}$ controller for a Wheeled Inverted Pendulum is designed and a numerical simulation of that is carried out. The Wheeled Inverted Pendulum is a kind of an inverted pendulum that has two equivalent points. To keep that the naturally unstable equivalent point, a controller should control the wheels persistently. Dynamic equations of the Wheeled Inverted Pendulum are derived with considering inclined road that is one of the representative road conditions. A Linear Matrix Inequality method is used to construct a controller that is able to stabilize the Wheeled Inverted Pendulum with considering the inclined road condition aggressively. Various numerical simulations show that the LMI based controller is doing well on not only flat road but also inclined road condition.

본 논문에서는 차륜형 역진자에 적용되는 LMI 제어기 설계와 그 수치 시뮬레이션이 수행되었다. 차륜형 역진자는 2개의 평형점을 갖고 있는 역진자의 일종이다. 불안정한 평형점에 대하여 평형을 유지하기 위하여 차륜형 역진자는 지속적으로 제어되어야 한다. 경사면을 고려하여 차륜형 역진자의 동역학 방정식이 유도되었다. 경사면을 적극적으로 고려하여 차륜형 역진자를 안정화 시킬 수 있는 제어기를 구성하는데 선형행렬부등식 기법이 적용되었다. LMI 기반 제어기가 평면과 경사면에 대해서 유효함을 보이기 위해서 다양한 수치 시뮬레이션이 수행되었다.

Keywords

References

  1. P. L. Kapitza, in Collected Papers of P. L. Kapitza, edited by D. Ter Haar (Pergamon, London, 1965), p.174.
  2. 정승현, 최정내, 오성권,“회전형 역진자 시스템에 대한 계층적 공정경쟁 기반 유전자 알고리즘을 이용한 최적 Fuzzy 제어기 설계,” 한국지능시스템학회 논문지, Vol. 18, No. 2, pp. 236-242, 2008.
  3. 신호선, 추준욱, 이승하, 이연정,“3차원 도립진자 시스템의 구현 및 퍼지 제어,” 퍼지 및 지능 시스템학회 논문지, Vol. 13, No. 2, pp. 137-147, 2003. https://doi.org/10.5391/JKIIS.2003.13.2.137
  4. http://www.segway.com/aboutus/press_releases/pr_120301.html.
  5. http://www.toyota.co.jp/jp/news/08/Aug/nt08_0805.html.
  6. J. Searock, B. Browning, M. Veloso, "Turning Segways into Soccer Robots," Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, pp.1029-1034, 2004.
  7. R. O. Ambrose, R. T. Savely, S. M. Goza, P. Strawser, M. A. Dftler, I. Spain, N. Radford, “Mobile Manipulation using NASA's Rbonaut,” Proceedings of IEEE International Conference on Robotics & Automation, New Orleans, US, pp.2104-2109, 2004.
  8. K. Furuta, H. Kajiwara, K. Kosuge, “Digital control of a double inverted pendulum on an inclined rail,” International Journal of control, Vol. 32, No. 5, pp.907-924, 1980. https://doi.org/10.1080/00207178008922898
  9. F. Grasser, A. D'Arrigo, S. Colombi, A. C. Rufer, “JOE: A Mobile, Inverted Pendulum,” IEEE Transactions on Industrial Electronics, Vol. 49, No. 1, Feb. pp.107-114, 2002. https://doi.org/10.1109/41.982254
  10. O. Matsumoto, S. Kajita, K. Tani, “Estimation and Control of the Attitude of a Dynamic Mobile Robot Using Internal Sensors (in Japanese),” Journal of Robotic Society of Japan, Vol.8, No.5, pp.37-46, 1990.
  11. K. NONAMI, S. Sivrioglu, “Active Vibration Control Using LMI-Based Mixed $H_2/H_{\infty}$ State and Output Feedback Control with Nonlinearty,” Proceedings of the 35th Conference on Decision and Control KOBE, Japan, pp.161-166, 1996.
  12. Pascal Gahinet, Arkadi Nemirovski, Alan J. Laub, Mahmoud Chilali, LMI Control Toolbox For Use with Matlab, 1995.

Cited by

  1. A Derivation of the Equilibrium Point for a Controller of a Wheeled Inverted Pendulum with Changing Its Center of Gravity vol.18, pp.5, 2012, https://doi.org/10.5302/J.ICROS.2012.18.5.496
  2. A Derivation of the Equilibrium Point for a Controller of a Wheeled Inverted Pendulum Running on an Inclined Road vol.29, pp.1, 2012, https://doi.org/10.7736/KSPE.2012.29.1.072
  3. A Development of the Self-Standable Mobile Robot Based on a Wheeled Inverted Pendulum Mechanism vol.30, pp.2, 2013, https://doi.org/10.7736/KSPE.2013.30.2.171
  4. A Wheeled Inverted Pendulum System with an Automatic Standing Arm vol.25, pp.6, 2015, https://doi.org/10.5391/JKIIS.2015.25.6.578
  5. Robust Position Control of a Reaction Wheel Inverted Pendulum vol.26, pp.2, 2016, https://doi.org/10.5391/JKIIS.2016.26.2.127