• Title/Summary/Keyword: Invertebrate animals

Search Result 21, Processing Time 0.031 seconds

Recent Advances in the Innate Immunity of Invertebrate Animals

  • Iwanaga, Sadaaki;Lee, Bok-Luel
    • BMB Reports
    • /
    • v.38 no.2
    • /
    • pp.128-150
    • /
    • 2005
  • Invertebrate animals, which lack adaptive immune systems, have developed other systems of biological host defense, so called innate immunity, that respond to common antigens on the cell surfaces of potential pathogens. During the past two decades, the molecular structures and functions of various defense components that participated in innate immune systems have been established in Arthropoda, such as, insects, the horseshoe crab, freshwater crayfish, and the protochordata ascidian. These defense molecules include phenoloxidases, clotting factors, complement factors, lectins, protease inhibitors, antimicrobial peptides, Toll receptors, and other humoral factors found mainly in hemolymph plasma and hemocytes. These components, which together compose the innate immune system, defend invertebrate from invading bacterial, fungal, and viral pathogens. This review describes the present status of our knowledge concerning such defensive molecules in invertebrates.

Isolation of an Invertebrate-type Lysozyme from the Body Wall of Spoon Worm, Urechis unicinctus (개불의 체벽으로부터 i-type 라이소자임의 정제)

  • Oh, Hye Young;Park, Nam Gyu
    • Journal of Life Science
    • /
    • v.28 no.3
    • /
    • pp.300-306
    • /
    • 2018
  • Lysozymes are innate immune factors that play a critical role in the defense against pathogens in various invertebrate animals including spoon worms. In this study, an invertebrate-type lysozyme was isolated from the body wall of spoon worm, Urechis unicinctus. The acidified body wall extract was partially separated using a Sep-Pak C18 cartridge. Among the fractions, the materials that were eluted with 60% methanol/0.1% trifluoroacetic acid showed the most potent antimicrobial activity against Bacillus subtilis KCTC 1021. A series of high performance liquid chromatography (HPLC) steps were then utilized to isolate a single antimicrobial absorbance peak. The molecular weight of the antimicrobial peak was approximated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), which was approximately 13 to 14 kDa. The partial primary structure of this antimicrobial protein that was analyzed, using LC-MS/MS, was CTGGRPPTCEDYAK (1611.69 Da). Homology search of these fourteen residues, using the National Center for Biotechnology Information Basic Local Alignment Search Tool (NCBI BLAST), revealed that the isolated protein was similar to the invertebrate-type lysozymes described in other animals. Then, the antimicrobial and lysozyme enzymatic (muramidase) activities of this protein were assessed. The isolated protein possessed antimicrobial activity and potent muramidase activity, which were comparable to those of hen egg white lysozyme. Therefore, the isolated protein was designated as Urechis unicinctus invertebrate-type lysozyme from the body wall, Uu-iLysb.

Studies on the Soil Invertebrate Community in the Process of Leaf Decomposition in Namsan and Kwangreung Deciduous Forests (남산과 광릉 활엽수림에서 낙엽분해에 관여하는 토양무척추동물군집에 관한 연구)

  • 배윤환;이준호
    • The Korean Journal of Soil Zoology
    • /
    • v.2 no.2
    • /
    • pp.83-91
    • /
    • 1997
  • One year study with litter bags(mesh size - 0.4mm, 0.8mm, 1.7mm and 5.0mm) was carried out to investigate the soil invertebrate community in the process of leaf decomposition in Namsan and Kwangreung deciduous forests, which were considered to be under different degrees of environmental selective pressure. Soil animals collected from litter bags were classified into the class of order or higher taxa. Acari and Collembola were major groups: Acari and Collembola were about 60% and 30% of total soil animals in their numbers, respectively. Among minor groups, Dipteria, Araneae, Diplopoda, Coleoptera and Chilopoda were comparatively dominant. In Namsan forest which was considered to be under higher environmental selective pressure than Kwangreung, the densities of Acari and Collembola were somewhat higher than in Kwangreung, although there was no statistically significant difference between two sites. The densities of Chilopoda, Enchytraeidae and Nematoda were much higher in Namsan than in Kwangreung but Diplopoda and Symphyla were much more in Kwangreung. It was expected that those groups could be used as bioindicators. The densities of Acari and Collembola were very low until March and then showed the peak in May. But they decreased slowly until November. There was no significant difference among the mesh sized of litter bags in the densities of Acari and Collembola but other groups of soil invertebrates seemed to be prevented from immigrating into the litter bag of mesh size 0.4mm. Decomposition rate of litter in the litter bag was low in early stage of decomposition. The % residual mass over initial mass at 8 months after litter bag introduction in the field was over 80%. Thereafter, % residual mass decreased more fast and was about 60% at 1 year after bag introduction. There was little evidence for the effects of soil invertebrates upon the litter decomposition in the period of this study. And there was no significant difference between Namsan and Kwangreung or among mesh sizes of litter bags in the decomposition rate.

  • PDF

Appetite control: worm's-eye-view

  • You, Young-Jai;Avery, Leon
    • Animal cells and systems
    • /
    • v.16 no.5
    • /
    • pp.351-356
    • /
    • 2012
  • Food is important to any animal, and a large part of the behavioral repertoire is concerned with ensuring adequate nutrition. Two main nutritional sensations, hunger and satiety, produce opposite behaviors. Hungry animals seek food, increase exploratory behavior and continue feeding once they encounter food. Satiated animals decrease exploratory behavior, take rest, and stop feeding. The signals of hunger or satiety and their effects on physiology and behavior will depend not only on the animal's current nutritional status, but also on its experience and the environment in which the animal evolved. In our novel, nutritionally rich environment, improper control of appetite contributes to diseases from anorexia to the current epidemic of obesity. Despite extraordinary recent advances, genetic contribution to appetite control is still poorly understood partly due to lack of simple genetic model systems. In this review, we will discuss current understanding of molecular and cellular mechanisms by which animals regulate food intake depending on their nutritional status. Then, focusing on relatively less known muscarinic and cGMP signals, we will discuss how the molecular and behavioral aspects of hunger and satiety are conserved in a simple invertebrate model system, Caenorhabditis elegans so as for us to use it to understand the genetics of appetite control.

Comparative Analysis on the Invertebrate Biodiversity between Organic and Conventional Agriculture Fields (유기 및 관행농법 농경지의 무척추동물 생물다양성 비교)

  • Kim, Hoon;Seo, Jae-Hwi;Kim, Kyo-Jin;Choi, Ga-In;Jo, Young-Ju;Kim, Tae-Yeon;Moon, Myung-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.4
    • /
    • pp.875-901
    • /
    • 2017
  • Although some skeptical views arguing that the impact of organic farming is quite limited to sustainable biodiversity, the organic agriculture has been generally accepted to have positive effects on various properties of soils not only on biophysical and ecological properties but also on biodiversity of the field. Therefore, this field investigation has been conducted to examine the effect of organic farming, relative to conventional agriculture, through a comparative investigations of the two systems for conserving local biodiversity of invertebrate animals. For this research, organic and conventional farming locations matched with both of a paddy field and a upland fields in Goesan-gun province (Chungcheongbuk-do, South Korea) were selected to compare the species richness of invertebrate biodiversity as follows: location OP (Organic Paddy field), location OU (Organic Upland field), location CP (Conventional Paddy field), and location CU (Conventional Upland field). Among 249 species collected, the numbers of species collected in the locations practicing organic farming were greater than the locations practicing conventional farming both in paddy fields (104 vs. 84 species) and upland fields (108 vs. 77 species). Changes in species richness can be shown in the selected locations depending on the agriculture system with organic (50 species) or conventional (44 species) farming systems in the paddy fields, similarly with organic (42 species) or conventional (35 species) farming in the upland fields, respectively. Our present research clearly shows that a wide range of taxa, including insects, spiders and other invertebrates, benefit from organic management through increases in abundance or species richness. It has been also identified that four orders (Hemiptera, Diptera, Hynemoptera, and Araneae) that are largely intrinsic to organic paddy field, and another three orders (Hemiptera, Coleoptera, and Araneae) that are particularly beneficial for organic crop field regime.

NMR-based Metabolomic Responses of Zebrafish (Danio Rerio) by Fipronil Exposure

  • Lee, Sujin;Oh, Sangah;Kim, Seonghye;Lee, Wonho;Choi, Juyoung;Lee, Hani;Lee, Yujin;Kim, Suhkmann
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.24 no.4
    • /
    • pp.104-116
    • /
    • 2020
  • Fipronil, the phenylpyrazole insecticide, is effective and used in various fields. Especially, fipronil was reliable because it was known to be specific on invertebrate animals than vertebrate animals including mammals. However, fipronil had potential risks that affect vertebrate animals as it blocks the gamma-aminobutyric acid (GABA) receptors that also exists in vertebrates as well as invertebrates. Therefore, it was necessary that harmful effects of fipronil on vertebrates are clarified. For this purpose, the zebrafish (Danio rerio) were used on behalf of vertebrate animals in present study. The zebrafish were exposed to 5 ㎍/L, 25 ㎍/L, and 50 ㎍/L of fipronil during 12, 24 and 72 hours. To closely observe toxic process, 12 hours and 24 hours of additional time point were set in the exposure test. Nuclear magnetic resonance (NMR)-based metabolomics is an approach to detect metabolic changes in organism resulted from external stimuli. In this study, NMR-based metabolomics showed the metabolic changes in zebrafish caused by fipronil exposure. Metabolic analysis revealed that fipronil interfered with energy metabolism and decreased the antioxidant ability in zebrafish. Antioxidant ability decline was remarkable at high exposure concentration. In addition, metabolic analysis results over time suggested that reactions for alleviating the excessive nerve excitation occurred in zebrafish after fipronil exposure. Through this study, it was elucidated that the adverse effects of fipronil on vertebrate animals are evident. The risk of fipronil on vertebrates can be no longer ignored. Moreover, this study has a meaning of practically necessary research for organism by examining the effects of fipronil at low concentrations existed in real environment.

Bioassay of Marine Animals to the Aquatic Toxicity of Composite Slag and Bituminous Coal (복합슬래그와 석탄에 대한 해산동물의 생물독성 검정)

  • KIM Jin Mee;KIM Kyoung Sun;LEE Jung Ah;SHIN Yun Kyung;PARK Chung Kil;CHIN Pyung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.38 no.2
    • /
    • pp.100-105
    • /
    • 2005
  • Two species of fish and five species of marine invertebrate showed different tolerances to the toxicity of composite slag and bituminaus coal. Especially, Hemicentrotus pulcherrimus and young Haliotis discus hannai displayed marked differences in tolerance from. H. pulcherrimus and young H. discus hannai showed lethal effects at higher concentrations than those concentrations of the composite slag in the 1.0 and $0.4\%$ range, respectively. H. pulcherrimus showed no lethal effects at a lower concentration of $1.0\%$ composite slag and some differences in the rate of oxygen consumption with this concentration of composite slag. The lethal effects of bituminous coal on marine and fisheries organisms, even with higher concentrations, were not observed. At a higher concentration than that of 500 mg/L (ppm) of bituminous coal, decrease effects appeared in the rate of oxygen consumption of the experimental organisms. Taking into consideration that the experimental concentration of composite slag and bituminous coal were impracticable in the ocean, the results of this experiment suggest that composite slag and bituminous coal pose no real threat to marine or fisheries organisms.

A Dangerous material perishing Human-kind by named Environmental Hormon (인류 멸종의 위험 물질 환경호르몬)

  • 김동규
    • Hwankyungkyoyuk
    • /
    • v.11 no.1
    • /
    • pp.275-290
    • /
    • 1998
  • Nowadays, mankind is suffering from serious pollutions. In proportion to industrial modernization, polltional problems have been increased and arised new one endlessly. Todays, we are cope with a newkind pollution materials threatening the life of mankind with root out. It is Environmental Hormon, that is, Endocrine Disrupting Chemical(EDs). EDs was made by dioxin, PCB, DDT, cadmium, lead, ether and even diethylstillbestrol(DES) that used to contraceptive pill etc. These EDs makes changing from normal human hormon to abnormal one and it kill off or fade out spermatozoa. Then the spermatozoa was infected with EDs makes man imposex, sexual malformations and infertility also. It is the more critical phenomenons that EDs invade into the field of wild-life; birds, invertebrate animals, fishes, mammalia especially. England TV(BBC) journalist Cadury, D. introduced a lot of case studies that many kind of male animals was changed feminization by EDs in her book (The Feminization of Nature;1997). Otherwise, Gibbs, P.E. and Bryan, G. W. reported about dog-whelk snail (a sort of sea shell) was changed gender from male to female by EDs in their study. Briefly speaking, Environmental Hormon (EDs) stem from polluted materials maloperate human and animal informational codes of hormon. It is a significant event to an individual ontogeny and ecological system. To overcome these problem WHO, OECD, UNEP held many work-shops, international seminars and researches but it is not enough yet. On May of 1997, the International Meeting of Environmental Administrators makes a $\ulcorner$Declaration on EDs Problems$\lrcorner$ for solving it fortunately and NHK(japan) reported Super Critical Fluid as a new materials for decrease toxicity of dioxin in recent. Key Words : Environmental Hormon, EDs, imposex feminization, gender, DES, spermatozoa. Super Critical Fluid.

  • PDF

Trace Fossils from the Late Pleistocene Marginal Marine Deposits of Jeju Island, Korea: Implications for the Psilonichnus and Skolithos Ichnofacies

  • Kim, Jeong Yul;Kang, Ji Hyun
    • Journal of the Korean earth science society
    • /
    • v.39 no.1
    • /
    • pp.23-45
    • /
    • 2018
  • Moderately diverse, but very abundant trace fossils are found from the Late Pleistocene deposits of Jeju Island, Korea. Vertical I-, Y- and U-shaped domichnia of annelids or decapods are, over 2500, extremely abundant, 3D network domichnia of callianassids are, over 200, very abundant, and small sinuous trails of nematode repichnia are, over 50, abundant in number. Horizontal trails attributable to polychaete or worm-like animals are, less than 50, common, but horizontal spreiten burrows, fish traces and crab trackways are, less than 10, rare in occurrence. Of these trace fossils, Taenidium barretti, Undichna britannica and Undichna unisulca represent the first record from the Pleistocene in Asia. Psilonichnus upsilon is the second record in Asia. Crab trackways probably produced by underwater punting gait of sideway walking crabs may represent the first record in the world. In addition, diverse and very abundant footprints of more than 500 hominids, more than 200 birds and more than 1000 mammals are closely associated with these invertebrate trace fossils. Trace fossil assemblage integrated with sedimentary facies is interpreted to have been formed in the marginal marine foreshore to backshore environment corresponding to the Psilonichnus and Skolithos ichnofacies.

Vertical Distribution of Mega-invertebrate and Calculation to the Stock Assessment of Commercial Species Inhibiting Shallow Hard-bottom in Dokdo, Korea (독도 연안 암반에 서식하는 초대형 저서동물의 수직분포와 산업종의 현존량 추정)

  • Park, Heung-Sik;Park, Rae-Sun;Myoung, Jung-Goo
    • Ocean and Polar Research
    • /
    • v.24 no.4
    • /
    • pp.457-464
    • /
    • 2002
  • Distribution and stock assessment of mega-benthos living in the shallow hard bottom around Dokdo were studied in July,2000. Depth and topographical conditions have affected to the densities and biomass of benthic animals. In shallow area, less than 10 m depth, turbo shell Batillus cornutus, mussel, Mytilus corusucs were dominated and showed distinct patterns in vertical distribution. On the other hand, the area over 10m depth, it showed diverse pattern depending on topography. Turbo shell, mussel and sea cucumber Stichopus japonicus were dominated in terms of fishery resources, but abalones were rarely sampled. Stock assessment were estimated to be 6.54 M/T, 3.89 M/T and 8.92 M/T, respectively. Some parts of coastal hard bottom around Dokdo, such as the area between Dongdo and Seodo, seemed to play an Important role as nursery ground. Therefore, it is necessary to the environmental monitoring for coastal fishery managements aspects.