Browse > Article
http://dx.doi.org/10.5352/JLS.2018.28.3.300

Isolation of an Invertebrate-type Lysozyme from the Body Wall of Spoon Worm, Urechis unicinctus  

Oh, Hye Young (Department of Biotechnology, College of Fisheries Sciences, Pukyong National University)
Park, Nam Gyu (Department of Biotechnology, College of Fisheries Sciences, Pukyong National University)
Publication Information
Journal of Life Science / v.28, no.3, 2018 , pp. 300-306 More about this Journal
Abstract
Lysozymes are innate immune factors that play a critical role in the defense against pathogens in various invertebrate animals including spoon worms. In this study, an invertebrate-type lysozyme was isolated from the body wall of spoon worm, Urechis unicinctus. The acidified body wall extract was partially separated using a Sep-Pak C18 cartridge. Among the fractions, the materials that were eluted with 60% methanol/0.1% trifluoroacetic acid showed the most potent antimicrobial activity against Bacillus subtilis KCTC 1021. A series of high performance liquid chromatography (HPLC) steps were then utilized to isolate a single antimicrobial absorbance peak. The molecular weight of the antimicrobial peak was approximated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), which was approximately 13 to 14 kDa. The partial primary structure of this antimicrobial protein that was analyzed, using LC-MS/MS, was CTGGRPPTCEDYAK (1611.69 Da). Homology search of these fourteen residues, using the National Center for Biotechnology Information Basic Local Alignment Search Tool (NCBI BLAST), revealed that the isolated protein was similar to the invertebrate-type lysozymes described in other animals. Then, the antimicrobial and lysozyme enzymatic (muramidase) activities of this protein were assessed. The isolated protein possessed antimicrobial activity and potent muramidase activity, which were comparable to those of hen egg white lysozyme. Therefore, the isolated protein was designated as Urechis unicinctus invertebrate-type lysozyme from the body wall, Uu-iLysb.
Keywords
Antimicrobial protein; lysozyme; muramidase activity; purification; Urechis unicinctus;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ito, Y., Yoshikawa, A., Hotani, T., Fukuda, S., Sugimura, K. and Imoto, T. 1999. Amino acid sequences of lysozymes newly purified from invertebrates imply wide distribution of a novel class in the lysozyme family. Eur. J. Biochem. 259, 456-461.   DOI
2 Itoh, N. and Takahashi, K. G. 2007. cDNA cloning and in situ hybridization of a novel lysozyme in the Pacific oyster, Crassostrea gigas. Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 148, 160-166.   DOI
3 Jain, R., Sonawane, S. and Mandrekar, N. 2008. Marine organisms: Potential source for drug discovery.
4 Jha, R. K. and Zi-rong, XZ. 2004. Biomedical compounds from marine organisms. Mar. Drugs 2, 123-146.   DOI
5 Joskova, R., Silerova, M., Prochazkova, P. and Bilej, M. 2009. Identification and cloning of an invertebrate-type lysozyme from Eisenia andrei. Dev. Comp. Immunol. 33, 932-938.   DOI
6 McHenery, J. G., Birkbeck, T. H. and Allen, J. A. 1979. The occurrence of lysozyme in marine bivalves. Comp. Biochem. Physiol. B, Comp. Biochem. 63, 25-28.
7 Montaser, R. and Luesch, H. 2011. Marine natural products: a new wave of drugs? Future Med. Chem. 3, 1475-1489.   DOI
8 Munro, M. H. G., Blunt, J. W., Dumdei, E. J., Hickford, S. J. H., Lill, R. E., Li, S., Battershill, C. N. and Duckworth, A. R. 1999. The discovery and development of marine compounds with pharmaceutical potential. J. Biotechnol. 70, 15-25.   DOI
9 Niu, R. and Chen, X. 2016. Full-Length cDNA, Prokaryotic Expression, and Antimicrobial Activity of UuHb-F-I from Urechis unicinctus. Biomed. Res. Int. 2016, doi:10.1155/2016/ 5683026.   DOI
10 Xue, Q. G., Itoh, N., Schey, K. L., Li, Y. L., Cooper, R. K. and La Peyre, J. F. 2007. A new lysozyme from the eastern oyster (Crassostrea virginica) indicates adaptive evolution of i-type lysozymes. Cell. Mol. Life Sci. 64, 82-95.   DOI
11 Zavalova, L., Baskova, I., Lukyanov, S., Sass, A., Snezhkov, E., Akopov, S., Artamonova, I., Archipova, V., Nesmeyanov, V. and Kozlov, D. 2000. Destabilase from the medicinal leech is a representative of a novel family of lysozymes. Biochim. Biophys. Acta. Protein Struct. Mol. Enzymol. 1478, 69-77.   DOI
12 Zhang, H. W., Sun, C., Sun, S. S., Zhao, X. F. and Wang, J. X. 2010. Functional analysis of two invertebrate-type lysozymes from red swamp crayfish, Procambarus clarkii. Fish Shellfish Immunol. 29, 1066-1072.   DOI
13 Christopher, J. O. and David, J. 2002. Burrow irrigation behavior of Urechis caupo, a filter-feeding marine invertebrate, in its natural habitat. Mar. Ecol. Prog. Ser. 245, 149-155.   DOI
14 Paskewitz, S. M., Li, B. and Kajla, M. K. 2008. Cloning and molecular characterization of two invertebrate-type lysozymes from Anopheles gambiae. Insect Mol. Biol. 17, 217-225.
15 Bachali, S., Jager, M., Hassanin, A., Schoentgen, F., Jolles, P., Fiala-Medioni, A. and Deutsch, J. S. 2002. Phylogenetic Analysis of Invertebrate Lysozymes and the Evolution of Lysozyme Function. J. Mol. Evol. 54, 652-664.
16 Beutler, B. 2004. Innate immunity: an overview. Mol. Immunol. 40, 845-59.   DOI
17 Brusca, R. C. and Brusca, G. J. 2003. Invertebrates, Sinauer Associates.
18 Callewaert, L. and Michiels, C. W. 2010. Lysozymes in the animal kingdom. J. Biosci. 35, 127-160.   DOI
19 Cong, L., Yang, X., Wang, X., Tada, M., Lu, M., Liu, H. and Zhu, B. 2009. Characterization of an i-type lysozyme gene from the sea cucumber Stichopus japonicus, and enzymatic and nonenzymatic antimicrobial activities of its recombinant protein. J. Biosci. Bioeng. 107, 583-588.   DOI
20 Fradkov, A., Berezhnoy, S., Barsova, E., Zavalova, L., Lukyanov, S., Baskova, I. and Sverdlov, E. D. 1996. Enzyme from the medicinal leech (Hirudo medicinalis) that specifically splits endo-$\varepsilon$ (-$\gamma$-Glu)-Lys isopeptide bonds: cDNA cloning and protein primary structure. FEBS Lett. 390, 145-148.   DOI
21 Schulenburg, H. and Boehnisch, C. 2008. Diversification and adaptive sequence evolution of Caenorhabditis lysozymes (Nematoda: Rhabditidae). BMC Evol. Biol. 8, 114.   DOI
22 Putnam, N. H., Butts, T., Ferrier, D. E. K., Furlong, R. F., Hellsten, U., Kawashima, T., Robinson-Rechavi, M., Shoguchi, E., Terry, A., Yu, J. K., Benito-Gutierrez, E., Dubchak, I., Garcia-Fernandez, J., Gibson-Brown, J. J., Grigoriev, I. V., Horton, A. C., de Jong, P. J., Jurka, J., Kapitonov, V. V., Kohara, Y., Kuroki, Y., Lindquist, E., Lucas, S., Osoegawa, K., Pennacchio, L. A., Salamov, A. A., Satou, Y., Sauka- Spengler, T., Schmutz, J., Shin, I, T., Toyoda, A., Bronner- Fraser, M., Fujiyama, A., Holland, L. Z., Holland, P. W. H., Satoh, N. and Rokhsar, D. S. 2008. The amphioxus genome and the evolution of the chordate karyotype. Nature 453, 1064-1071.   DOI
23 Ruppert, E. E., Fox, R. S. and Barnes, R. D., 2004. Invertebrate Zoology: A Functional Evolutionary Approach, Thomson-Brooks/Cole.
24 Saurabh, S. and Sahoo, P. 2008. Lysozyme: an important defence molecule of fish innate immune system. Aquacult. Res. 39, 223-239.   DOI
25 Seo, J. K., Crawford, J. M., Stone, K. L. and Noga, E. J. 2005. Purification of a novel arthropod defensin from the American oyster, Crassostrea virginica. Biochem. Biophys. Res. Commun. 338, 1998-2004.   DOI
26 Sung, W. S., Park, S. H. and Lee, D. G. 2008. Antimicrobial effect and membrane‐active mechanism of Urechistachykinins, neuropeptides derived from Urechis unicinctus. FEBS Lett. 582, 2463-2466.   DOI
27 Takeshita, K., Hashimoto, Y., Ueda, T. and Imoto, T. 2003. A small chimerically bifunctional monomeric protein: Tapes japonica lysozyme. Cell. Mol. Life Sci. 60, 1944-1951.   DOI