• Title/Summary/Keyword: Inversion algorithm

Search Result 291, Processing Time 0.031 seconds

IP Modeling and Inversion Using Complex Resistivity (복소 전기비저항을 이용한 IP 탐사 모델링 및 역산)

  • Son, Jeong-Sul;Kim, Junhg-Ho;Yi, Myeong-Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.2
    • /
    • pp.138-146
    • /
    • 2007
  • This paper describes 2.5D induced polarization (IP) modeling and inversion algorithms using complex resistivity. The complex resistivity method has merits for acquiring more valuable information about hydraulic parameters and pore fluid than the conventional IP methods. The IP modeling and inversion algorithms are developed by allowing complex arithmetic in existing DC modeling and inversion algorithms. The IP modeling and inversion algorithms use a 2.5D DC finite-element algorithm and a damped least-squares method with smoothness constraints, respectively. The accuracy of the IP modeling algorithm is verified by comparing its responses of two synthetic models with two different approaches: linear filtering for a three-layer model and an integral equation method for a 3D model. Results from these methods are well matched to each other. The inversion algorithm is validated by a synthetic example which has two anomalous bodies, one is more conductive but non-polarizable than the background, and the other is polarizable but has the same resistivity as the background. From the inverted section, we can cleary identify each anomalous body with different locations. Furthermore, in order to verify its efficiency to the real filed example, we apply the inversion algorithm to another three-layer model which includes phase anomaly in the second layer.

Guidance and Control Algorithm for Waypoint Following of Tilt-Rotor Airplane in Helicopter Flight Mode (틸트로터 항공기의 경로점 추종 비행유도제어 알고리즘 설계 : 헬리콥터 비행모드)

  • Ha, Cheol-Keun;Yun, Han-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.3
    • /
    • pp.207-213
    • /
    • 2005
  • This paper deals with an autonomous flight guidance and control algorithm design for TR301 tilt-rotor airplane under development by Korea Aerospace Research Institute for simulation purpose. The objective of this study is to design autonomous flight algorithm in which the tilt-rotor airplane should follow the given waypoints precisely. The approach to this objective in this study is that, first of all, model-based inversion is applied to the highly nonlinear tilt-rotor dynamics, where the tilt-rotor airplane is assumed to fly at helicopter flight mode(nacelle angle=0 deg), and then the control algorithm, based on classical control, is designed to satisfy overall system stabilization and precise waypoint following performance. Especially, model uncertainties due to the tiltrotor model itself and inversion process are adaptively compensated in a simple neural network(Sigma-Phi NN) for performance robustness. The designed algorithm is evaluated in the tilt-rotor nonlinear airplane in helicopter flight mode to analyze the following performance for given waypoints. The simulation results show that the waypoint following responses for this algorithm are satisfactory, and control input responses are within control limits without saturation.

An Application of Minimum Support Stabilizer as a Model Constraint in Magnetotelluric 2D Inversion (최소모델영역 연산자를 모델제한조건으로 적용한 2차원 MT 역산)

  • Lee, Seong-Kon
    • Journal of the Korean earth science society
    • /
    • v.30 no.7
    • /
    • pp.834-844
    • /
    • 2009
  • Two-dimensional magnetotelluric (MT) inversion algorithm using minimum support (MS) stabilizer functional was implemented in this study to enhance the contrast of inverted images. For this implementation, this study derived a formula in discrete form for creeping model updates in the least-squares linearized inversion. A spatially varying regularization parameter determination algorithm, which is known as ACB (Active Constraint Balancing), was also adopted to stabilize the inversion process when using MS stabilizer as a model constraint. Inversion experiments for a simple isolated body model show well the feature of MS stabilizer in concentrating the anomalous body compared with the second-order derivative model constraint. This study also compared MS stabilizer and the second-order derivative model constraints for a model having multiple anomalous bodies to show the applicability of the algorithm into field data.

Retrieval of Aerosol Microphysical Parameter by Inversion Algorithm using Multi-wavelength Raman Lidar Data (역행렬 알고리즘을 이용한 다파장 라만 라이다 데이터의 고도별 에어로졸 Microphysical Parameter 도출)

  • Noh, Young-Min;Kim, Young-Joon;Muller, Detlef
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.1
    • /
    • pp.97-109
    • /
    • 2007
  • Vertical distribution and optical properties of atmospheric aerosols above the Korean peninsula are quite important to estimate effects of aerosol on atmospheric environment and regional radiative forcing. For the first time in Korea, vertical microphysical properties of atmospheric aerosol obtained by inversion algorithm were analyzed based on optical data of multi-wavelength Raman lidar system developed by the Advanced Environmental Monitoring Research Center (ADEMRC), Gwangju Institute Science and Technology (GIST). Data collected on 14 June 2004 at Gwangju ($35.10^{\circ}N,\;126.53^{\circ}E$) and 27 May 2005 at Anmyeon island ($36.32^{\circ}N,\;126.19^{\circ}E$) were used as raw optical data for inversion algorithm. Siberian forest fire smoke and local originated haze were observed above and within the height of PBL, respectively on 14 June 2004 according to NOAA/Hysplit backstrajectory analysis. The inversion of lidar optical data resulted in particle effective radii around $0.31{\sim}0.33{\mu}m$, single scattering albedo between $0.964{\sim}0.977$ at 532 nm in PBL and effective radii of $0.27{\mu}m$ and single scattering albedo between $0.923{\sim}0.924$ above PBL. In the case on 27 May 2005, biomass burning from east China was a main source of aerosol plume. The inversion results of the data on 27 May 2005 were found to be particle effective radii between $0.23{\sim}0.24{\mu}m$, single scattering albedo around $0.924{\sim}0.929$ at 532 nm. Additionally, the inversion values were well matched with those of Sun/sky radiometer in measurement period.

RETRIEVAL OF AEROSOL MICROPHYSICAL PARAMETER BY INVERSION ALGORITHM USING MULTI-WAVELENGTH RAMAN LIDAR DATA

  • Noh, Young-Min
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.298-301
    • /
    • 2007
  • Vertical distribution and optical properties of atmospheric aerosols above the Korean peninsula are quite important to estimate effects of aerosol on atmospheric environment and regional radiative forcing. For the first time in Korea, vertical microphysical properties of atmospheric aerosol obtained by inversion algorithm were analyzed based on optical data of multi-wavelength Raman lidar system developed by the Advanced Environmental Monitoring Research Center (ADEMRC), Gwangju Institute Science and Technology (GIST). Data collected on 14 June 2004 at Gwangju ($35.10^{\circ}N$, $126.53^{\circ}E$) and 27 May 2005 at Anmyeon island ($36.32^{\circ}N$, $126.19^{\circ}E$) were used as raw optical data for inversion algorithm. Siberian forest fire smoke and local originated haze were observed above and within the height of PBL, respectively on 14 June 2004 according to NOAA/Hysplit backstrajectory analysis. The inversion of lidar optical data resulted in particle effective radii around 0.32 ${\mu}m$, single scattering albedo between 0.97 at 532 nm in PBL and effective radii of 0.27 ${\mu}m$ and single scattering albedo of 0.92 above PBL. In the case on 27 May 2005, biomass burning from east China was a main source of aerosol plume. The inversion results of the data on 27 May 2005 were found to be particle effective radii between 0.24 ${\mu}m$, single scattering albedo around 0.91 at 532 nm. Additionally, the inversion values were well matched with those of Sun/sky radiometer in measurement period.

  • PDF

Plan to build up a measurement system for rock physical properties monitoring during $CO_2$ injection ($CO_2$ 주입 암석물성 측정 장치 구축 방안)

  • Cho, Seong-Jun;Kim, Jung-Ho;Son, Jeong-Sul;Bang, Eun-Seok;Keehm, Young-Seuk;Synn, Joong-Ho
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.303-306
    • /
    • 2007
  • After Kyoto protocol took effect, many countries are making efforts to reduce $CO_2$ one of effective which is geosequestration. But a percentage of geosequestration in total research budget is very small and the priority order of research also is receded in Korea. As one of efforts to activate the research on geosequestration in field of geophysics, we proposed the plan to build up a measurement system for rock physical properties monitoring during $CO_2$ injection which will function as original technology. The system consists of two part, one of which is a data acquisition system based on seismic and complex resistivity tomographic measurement and the other of which is a tri-axial compressive system to realize the in-situ condition. And also developments of various inversion algorithms are proposed to interpret data qualitatively such as a inversion algorithm for confined cylindrical boundary, a joint inversion algorithm and a 4-D inversion algorithm.

  • PDF

A Low Power and Low Noise Data Bus Inversion for High Speed Graphics SDRAM (High Speed Graphics SDRAM을 위한 저 전력, 저 노이즈 Data Bus Inversion)

  • Kwack, Seung-Wook;Kwack, Kae-Dal
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.7
    • /
    • pp.1-6
    • /
    • 2009
  • This paper presents new high speed architecture using DBI(Data Bus Inversion) in DRAM. The DBI is one of the general methods in the signaling circuits to decrease the known problems such as SSO and LSI. Many architectures have been proposed to reduce the number of transitions on the data bus. In this paper, the DBI, the Analog Majority Voter (AMV) circuit, the GIO control circuit and the SSO algorithm are newly proposed. The power consumption can he reduced with the help of direct GIO inversion method and the eye diagram of data can be increased to 40ps. Using proposed DBI scheme can produce almost stable SI of DQs against high speed operation. The DBI is fabricated in 90nm CMOS Technology.

Joint Electromagnetic Inversion with Structure Constraints Using Full-waveform Inversion Result (완전파형역산결과를 구조적 제약 조건으로 이용한 고해상도 전자탐사 복합역산 알고리듬 개발)

  • Jeong, Soocheol;Seol, Soon Jee;Byun, Joongmoo
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.4
    • /
    • pp.187-201
    • /
    • 2014
  • Compared with the separated inversion of electromagnetic (EM) and seismic data, a joint inversion using both EM and seismic data reduces the uncertainty and gives the opportunity to use the advantage of each data. Seismic fullwaveform inversion allows velocity information with high resolution in complicated subsurface. However, it is an indirect survey which finds the structure containing oil and gas. On the other hand, marine controlled-source EM (mCSEM) inversion can directly indicate the oil and gas using different EM properties of hydrocarbon with marine sediments and cap rocks whereas it has poor resolution than seismic method. In this paper, we have developed a joint EM inversion algorithm using a cross-gradient technique. P-wave velocity structure obtained by full-waveform inversion using plane wave encoding is used as structure constraints to calculate the cross-gradient term in the joint inversion. When the jointinversion algorithm is applied to the synthetic data which are simulated for subsea reservoir exploration, images have been significantly improved over those obtained from separate EM inversion. The results indicate that the developed joint inversion scheme can be applied for detecting reservoir and calculating the accurate oil and gas reserves.

Characteristics of Static Shift in 3-D MT Inversion (3차원 MT 역산에서 정적효과의 특성 고찰)

  • Lee Tae Jong;Uchida Toshihiro;Sasaki Yutaka;Song Yoonho
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.4
    • /
    • pp.199-206
    • /
    • 2003
  • Characteristics of the static shift are discussed by comparing the three-dimensional MT inversion with/without static shift parameterization. The galvanic distortion by small-scale shallow feature often leads severe distortion in inverted resistivity structures. The new inversion algorithm is applied to four numerical data sets contaminated by different amount of static shift. In real field data interpretations, we generally do not have any a-priori information about how much the data contains the static shift. In this study, we developed an algorithm for finding both Lagrangian multiplier for smoothness and the trade-off parameter for static shift, simultaneously in 3-D MT inversion. Applications of this inversion routine for the numerical data sets showed quite reasonable estimation of static shift parameters without any a-priori information. The inversion scheme is successfully applied to all the four data sets, even when the static shift does not obey the Gaussian distribution. Allowing the static shift parameters have non-zero degree of freedom to the inversion, we could get more accurate block resistivities as well as static shifts in the data. When inversion does not consider the static shift as inversion parameters (conventional MT inversion), the block resistivities on the surface are modified considerably to match possible static shift. The inhomogeneous blocks on the surface can generate the static shift at low frequencies. By those mechanisms, the conventional 3-D MT inversion can reconstruct the resistivity structures to some extent in the deeper parts even when moderate static shifts are in the data. As frequency increased, however, the galvanic distortion is not frequency independent any more, and thus the conventional inversion failed to fit the apparent resistivity and phase, especially when strong static shift is added. Even in such case, however, reasonable estimation of block resistivity as well as static shift parameters were obtained by 3-D MT inversion with static shift parameterization.

An efficient 2.5D inversion of loop-loop electromagnetic data (루프-루프 전자탐사자료의 효과적인 2.5차원 역산)

  • Song, Yoon-Ho;Kim, Jung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.1
    • /
    • pp.68-77
    • /
    • 2008
  • We have developed an inversion algorithm for loop-loop electromagnetic (EM) data, based on the localised non-linear or extended Born approximation to the solution of the 2.5D integral equation describing an EM scattering problem. Source and receiver configuration may be horizontal co-planar (HCP) or vertical co-planar (VCP). Both multi-frequency and multi-separation data can be incorporated. Our inversion code runs on a PC platform without heavy computational load. For the sake of stable and high-resolution performance of the inversion, we implemented an algorithm determining an optimum spatially varying Lagrangian multiplier as a function of sensitivity distribution, through parameter resolution matrix and Backus-Gilbert spread function analysis. Considering that the different source-receiver orientation characteristics cause inconsistent sensitivities to the resistivity structure in simultaneous inversion of HCP and VCP data, which affects the stability and resolution of the inversion result, we adapted a weighting scheme based on the variances of misfits between the measured and calculated datasets. The accuracy of the modelling code that we have developed has been proven over the frequency, conductivity, and geometric ranges typically used in a loop-loop EM system through comparison with 2.5D finite-element modelling results. We first applied the inversion to synthetic data, from a model with resistive as well as conductive inhomogeneities embedded in a homogeneous half-space, to validate its performance. Applying the inversion to field data and comparing the result with that of dc resistivity data, we conclude that the newly developed algorithm provides a reasonable image of the subsurface.