• Title/Summary/Keyword: Inversion algorithm

Search Result 291, Processing Time 0.029 seconds

Interpretation on the Subsurface Velocity Structure by Seismic Refraction Tomography (탄성파 굴절법 토모그래피를 이용한 지반의 속도분포 해석)

  • Cho, Chang-Soo;Lee, Hee-Il;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.1
    • /
    • pp.6-17
    • /
    • 2002
  • Refraction tomography was developed to interpret subsurface velocity structure easily in topographic conditions. It was applied to synthetic refraction data to find the factors for optimization of applicability of refraction tomography such as configuration of profiling and its length, spacing of geophones and sources and topographic conditions. Also, low velocity layer near VSP hole could be detected by joint inversion with refraction and VSP data. Continuity of subsurface velocity structure in two different spread lines for area of house land development was good in case of applying our algorithm and velocity structure was classified quantitatively to evaluate rippability for engineering works.

Automatic Interpretation of the Borehole Normal Resistivity Data by Using a Personal Computer (퍼스널 컴퓨터를 이용한 비저항 물리검층자료의 자동해석)

  • Kim, Jin-Hu
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.51-60
    • /
    • 1988
  • A data transform is performed by using a point-electrode focusing method in order to obtain accurate and objective interpretation of the borehole normal resistivity data. Two new synthetic curves can be generated through the data transform. The one is an approximate apparent resistivity curve, which would be used to predict the true resistivity of the formation. The other one is a bed boundary coefficient curve, which would be used to distinguish bed boundaries. The accuracy of the normal data interpretation can be improved and this method takes much less computational time than a linear inversion technique. Moreover, this method does not require an initial guess model and limitation of number of unknown parameters. Since this algorithm can be run on a personal computer, an immediate interpretation would be possible at the field work site. If an additional set of electrodes(a=125cm)is attached to a normal resistivity tool which is being used (a=25cm, 50cm, 100cm), the apparent resistivity for the point-electrode focusing device can be calculated, and it would maximize the use of short and long normal resistivity data and promote the accuracy of the interpretation.

  • PDF

NAP and Optimal Normal Basis of Type II and Efficient Exponentiation in $GF(2^n)$ (NAF와 타입 II 최적정규기저를 이용한 $GF(2^n)$ 상의 효율적인 지수승 연산)

  • Kwon, Soon-Hak;Go, Byeong-Hwan;Koo, Nam-Hun;Kim, Chang-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1C
    • /
    • pp.21-27
    • /
    • 2009
  • We present an efficient exponentiation algorithm for a finite field $GF(2^n)$ determined by an optimal normal basis of type II using signed digit representation of the exponents. Our signed digit representation uses a non-adjacent form (NAF) for $GF(2^n)$. It is generally believed that a signed digit representation is hard to use when a normal basis is given because the inversion of a normal element requires quite a computational delay. However our result shows that a special normal basis, called an optimal normal basis (ONB) of type II, has a nice property which admits an effective exponentiation using signed digit representations of the exponents.

A new method solving the temperature field of concrete around cooling pipes

  • Zhu, Zhenyang;Qiang, Sheng;Chen, Weimin
    • Computers and Concrete
    • /
    • v.11 no.5
    • /
    • pp.441-462
    • /
    • 2013
  • When using the conventional finite element method, a great number of grid nodes are necessary to describe the large and uneven temperature gradients in the concrete around cooling pipes when calculating the temperature field of mass concrete with cooling pipes. In this paper, the temperature gradient properties of the concrete around a pipe were studied. A new calculation method was developed based on these properties and an explicit iterative algorithm. With a small number of grid nodes, both the temperature distribution along the cooling pipe and the temperature field of the concrete around the water pipe can be correctly calculated with this new method. In conventional computing models, the cooling pipes are regarded as the third boundary condition when solving a model of concrete with plastic pipes, which is an approximate way. At the same time, the corresponding parameters have to be got by expensive experiments and inversion. But in the proposed method, the boundary condition is described strictly, and thus is more reliable and economical. And numerical examples were used to illustrate that this method is accurate, efficient and applicable to the actual engineering.

Efficient Implementation of Finite Field Operations in NIST PQC Rainbow (NIST PQC Rainbow의 효율적 유한체 연산 구현)

  • Kim, Gwang-Sik;Kim, Young-Sik
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.3
    • /
    • pp.527-532
    • /
    • 2021
  • In this paper, we propose an efficient finite field computation method for Rainbow algorithm, which is the only multivariate quadratic-equation based digital signature among the current US NIST PQC standardization Final List algorithms. Recently, Chou et al. proposed a new efficient implementation method for Rainbow on the Cortex-M4 environment. This paper proposes a new multiplication method over the finite field that can reduce the number of XOR operations by more than 13.7% compared to the Chou et al. method. In addition, a multiplicative inversion over that can be performed by a 4x4 matrix inverse instead of the table lookup method is presented. In addition, the performance is measured by porting the software to which the new method was applied onto RaspberryPI 3B+.

Pose Transformation of a Frontal Face Image by Invertible Meshwarp Algorithm (역전가능 메쉬워프 알고리즘에 의한 정면 얼굴 영상의 포즈 변형)

  • 오승택;전병환
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.1_2
    • /
    • pp.153-163
    • /
    • 2003
  • In this paper, we propose a new technique of image based rendering(IBR) for the pose transformation of a face by using only a frontal face image and its mesh without a three-dimensional model. To substitute the 3D geometric model, first, we make up a standard mesh set of a certain person for several face sides ; front. left, right, half-left and half-right sides. For the given person, we compose only the frontal mesh of the frontal face image to be transformed. The other mesh is automatically generated based on the standard mesh set. And then, the frontal face image is geometrically transformed to give different view by using Invertible Meshwarp Algorithm, which is improved to tolerate the overlap or inversion of neighbor vertexes in the mesh. The same warping algorithm is used to generate the opening or closing effect of both eyes and a mouth. To evaluate the transformation performance, we capture dynamic images from 10 persons rotating their heads horizontally. And we measure the location error of 14 main features between the corresponding original and transformed facial images. That is, the average difference is calculated between the distances from the center of both eyes to each feature point for the corresponding original and transformed images. As a result, the average error in feature location is about 7.0% of the distance from the center of both eyes to the center of a mouth.

A cosmic ray muons tomography system with triangular bar plastic scintillator detectors and improved 3D image reconstruction algorithm: A simulation study

  • Yanwei Zhao;Xujia Luo;Kemian Qin;Guorui Liu;Daiyuan Chen;R.S. Augusto;Weixiong Zhang;Xiaogang Luo;Chunxian Liu;Juntao Liu;Zhiyi Liu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.681-689
    • /
    • 2023
  • Purpose: Muons are characterized by a strong penetrating ability and can travel through thousands of meters of rock, making them ideal to image large volumes and substances typically impenetrable to, for example, electrons and photons. The feasibility of 3D image reconstruction and material identification based on a cosmic ray muons tomography (MT) system with triangular bar plastic scintillator detectors has been verified in this paper. Our prototype shows potential application value and the authors wish to apply this prototype system to 3D imaging. In addition, an MT experiment with the same detector system is also in progress. Methods: A simulation based on GEANT4 was developed to study cosmic ray muons' physical processes and motion trails. The yield and transportation of optical photons scintillated in each triangular bar of the detector system were reproduced. An image reconstruction algorithm and correction method based on muon scattering, which differs from the conventional PoCA algorithm, has been developed based on simulation data and verified by experimental data. Results: According to the simulation result, the detector system's position resolution is below 1 ~ mm in simulation and 2 mm in the experiment. A relatively legible 3D image of lead bricks in size of 20 cm × 5 cm × 10 cm used our inversion algorithm can be presented below 1× 104 effective events, which takes 16 h of acquisition time experimentally. Conclusion: The proposed method is a potential candidate to monitor the cosmic ray MT accurately. Monte Carlo simulations have been performed to discuss the application of the detector and the simulation results have indicated that the detector can be used in cosmic ray MT. The cosmic ray MT experiment is currently underway. Furthermore, the proposal also has the potential to scan the earth, buildings, and other structures of interest including for instance computerized imaging in an archaeological framework.

Hardware Implementation of Elliptic Curve Scalar Multiplier over GF(2n) with Simple Power Analysis Countermeasure (SPA 대응 기법을 적용한 이진체 위의 타원곡선 스칼라곱셈기의 하드웨어 구현)

  • 김현익;정석원;윤중철
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.9
    • /
    • pp.73-84
    • /
    • 2004
  • This paper suggests a new scalar multiplication algerian to resist SPA which threatens the security of cryptographic primitive on the hardware recently, and discusses how to apply this algerian Our algorithm is better than other SPA countermeasure algorithms aspect to computational efficiency. Since known SPA countermeasure algorithms have dependency of computation. these are difficult to construct parallel architecture efficiently. To solve this problem our algorithm removes dependency and computes a multiplication and a squaring during inversion with parallel architecture in order to minimize loss of performance. We implement hardware logic with VHDL(VHSIC Hardware Description Language) to verify performance. Synthesis tool is Synplify Pro 7.0 and target chip is Xillinx VirtexE XCV2000EFGl156. Total equivalent gate is 60,508 and maximum frequency is 30Mhz. Our scalar multiplier can be applied to digital signature, encryption and decryption, key exchange, etc. It is applied to a embedded-micom it protects SPA and provides efficient computation.

Subsurface Imaging using Headwave Stacking (선두파 중합을 이용한 천부지층의 영상화)

  • Park Jung-Jae;Ko Seung-Won;Shin Chang-Soo;Suh Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.3
    • /
    • pp.178-184
    • /
    • 2002
  • For economy and convenience, seismic refraction survey is widely used in surveying for large civil engineering work. The purpose of this study is to obtain the numerical responses of various models using Kirchhoff migration, and to analyze its application to the real data processing. Synthetic traveltime curve was calculated by vidale's algorithm, and various models such as 2 or 3 layer model and irregular topography model are tested to simulate the response of real structure. In order to compare the effect of initial velocity model, true velocity models, inversion results by tomography, smooth velocity models are used as an initial guess. The responses of model data show that the algorithm of this study is more sensitive to initial velocity model than the reflection survey, so choosing a suitable initial velocity model will be the most important thing in real data processing.

Three-dimensional Finite Difference Modeling of Time-domain Electromagnetic Method Using Staggered Grid (엇갈린 격자를 이용한 3차원 유한차분 시간영역 전자탐사 모델링)

  • Jang, Hangilro;Nam, Myung Jin;Cho, Sung Oh;Kim, Hee Joon
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.3
    • /
    • pp.121-128
    • /
    • 2017
  • Interpretation of time-domain electromagnetic (TEM) data has been made mostly based on one-dimensional (1-D) inversion scheme in Korea. A proper interpretation of TEM data should employ 3-D TEM forward and inverse modeling algorithms. This study developed a 3-D TEM modeling algorithm using a finite difference time-domain (FDTD) method with staggered grid. In numerically solving Maxwell equations, fictitious displacement current is included based on an explicit FDTD method using a central difference approximation scheme. The developed modeling algorithm simulated a small-coil source configuration to be verified against analytic solutions for homogeneous half-space models. Further, TEM responses for a 3-D anomaly are modeled and analyzed. We expect that it will contribute greatly to the precise interpretation of TEM data.