• Title/Summary/Keyword: Inversion

Search Result 2,293, Processing Time 0.032 seconds

Application of Displacement-Vector Objective Function for Frequency-domain Elastic Full Waveform Inversion (주파수 영역 탄성파 완전파형역산을 위한 변위벡터 목적함수의 적용)

  • Kwak, Sang-Min;Pyun, Suk-Joon;Min, Dong-Joo
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.3
    • /
    • pp.220-226
    • /
    • 2011
  • In the elastic wave equations, both horizontal and vertical displacements are defined. Since we can measure both the horizontal and vertical displacements in field acquisition, these displacements compose a displacement vector. In this study, we propose a frequency-domain elastic waveform inversion technique taking advantage of the magnitudes of displacement vectors to define objective function. When we apply this displacement-vector objective function to the frequency-domain waveform inversion, the inversion process naturally incorporates the back-propagation algorithm. Through the inversion examples with the Marmousi model and the SEG/EAGE salt model, we could note that the RMS error of the solution obtained by our algorithm decreased more stably than that of the conventional method. Particularly, the density of the Marmousi model and the low-velocity sub-salt zone of the SEG/EAGE salt model were successfully recovered. Since the gradient direction obtained from the proposed objective function is numerically unstable, we need additional study to stabilize the gradient direction. In order to perform the waveform inversion using the displacementvector objective function, it is necessary to acquire multi-component data. Hence, more rigorous study should be continued for the multi-component land acquisition or OBC (Ocean Bottom Cable) multi-component survey.

An Improved Joint Detection of Frame, Integer Frequency Offset, and Spectral Inversion for Digital Radio Mondiale Plus

  • Kim, Seong-Jun;Park, Kyung-Won;Lee, Kyung-Taek;Choi, Hyung-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.2
    • /
    • pp.601-617
    • /
    • 2014
  • In digital radio broadcasting systems, long delays are incurred in service start time when tuning to a particular frequency because several synchronization steps, such as symbol timing synchronization, frame synchronization, and carrier frequency offset and sampling frequency offset compensation are necessary. Therefore, the operation of the synchronization blocks causes delays ranging from several hundred milliseconds to a few seconds until the start of the radio service after frequency tuning. Furthermore, if spectrum inversed signals are transmitted in digital radio broadcasting systems, the receivers are unable to decode them, even though most receivers can demodulate the spectral inversed signals in analog radio broadcasting systems. Accordingly, fast synchronization techniques and a method for spectral inversion detection are required in digital radio broadcasting systems that are to replace the analog radio systems. This paper presents a joint detection method of frame, integer carrier frequency offset, and spectrum inversion for DRM Plus digital broadcasting systems. The proposed scheme can detect the frame and determine whether the signal is normal or spectral inversed without any carrier frequency offset and sampling frequency offset compensation, enabling fast frame synchronization. The proposed method shows outstanding performance in environments where symbol timing offsets and sampling frequency offsets exist.

Immediate Effects of Low-Dye Taping on the Ankle Motion and Ground Reaction Forces in the Pronated Rear-Foot During Gait

  • Kim, Sung-shin;Chung, Jae-yeop
    • Physical Therapy Korea
    • /
    • v.23 no.1
    • /
    • pp.72-79
    • /
    • 2016
  • Background: Increased foot pronation causes biomedchanical changes at the lower limbs, which may result in musculoskeletal injuries at the proximal joints. Pronation rear-foot leads to plantar fasciitis, Achilles tendonitis, and posterior tibial tendonitis pathologically. According to the recent meta-analysis, They showed that therapeutic adhesive taping is more effective than foot orthoses and motion control footwear, low-Dye (LD) taping has become the most popular method used by physiotherapists. Objects: The purpose of this study was to determine the immediate effects of LD taping results in different ankle motion and ground reaction force (GRF) as before and after applied LD taping on pronated rear-foot during gait. Methods: Twenty-four participants were recruited for this study. The gait data were recorded using an 8-camera motion capture system and two force platforms. At first, the experiments were carried out that participants walked barefoot without LD taping. And then they walked both feet was applied LD taping. Results: The ankle inversion minimum was significantly greater after LD taping than before LD taping (p=.04); however, in the GRF, there were no significant differences in the inversion maximum or total motion of the stance phase (p=.33, p=.07), or in the vertical (p=.33), posterior (p=.22), and lateral (p=.14) peak forces. Conclusion: The application of taping to pronation rear-foot assists in increased ankle inversion.

The Evaluation of Optimized Inversion-Recovery Fat-Suppression Techniques for T2-Weighted Abdominal MR Imaging : Preliminary report (복부의 T2강조 영상에서 지방소거기법의최적의 평가)

  • Lee, Da-Hee;Goo, Eun-Hoe
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.14 no.1
    • /
    • pp.31-35
    • /
    • 2012
  • To test the real image quality of a spectral attenuated inversion-recovery (SPAIR) fat-suppression (FS) techniquein clinical abdominal MRI by comparison to turbo spin echo inversion-recovery (TSEIR) fat-suppression (FS) technique. 3.0T MRI studies of the abdomen were performed in 30 patients with liver lesions (hemangiomas n: 15; HCC n: 15). T2W sequences were acquired using SPAIR TSEIR. Measurements included retroperitoneal and mesenteric fat signal-to-noise (SNR) to evaluate FS; liver lesion contrast-to-noise (CNR) to evaluate bulk water signal recovery effects; and bowel wall delineation to evaluate susceptibility and physiological motion effects. SPAIR-TSEIR images produce significantly improved FS and liver lesion CNR. The mean SNR of the retroperitoneal and mesenteric fat for SPAIR were 20.5, 10.2 and TSEIR were 43.2, 24.1 (P<0.05). SPAIR-TSEIR images produced higher CNR for both hemangiomas CNR 164.88 vs 126.83 (P<0.05) and metastasis CNR 75.27 vs 53.19 (P<0.05). Bowel wall visualization was significantly improved using in both SPAIR-TSEIR (P< 0.05). The real image quality of SPAIR was better than over conventional TSEIR FS on clinical abdominal MRI scans.

  • PDF

Hysteresis Compensation in Piezoceramic Actuators Through Preisach Model Inversion (Preisach 모델을 이용한 압전액츄에이터 이력 보상)

  • Chung C.Y.;Lee D.H.;Kim H.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1074-1078
    • /
    • 2005
  • In precision positioning applications, such as scanning tunneling microscopy and diamond turning machines [1], it is often required that actuators have nanometer resolution in displacement, high stiffness, and fast frequency response. These requirements are met by the use of piezoceramic actuators. A major limitation of piezoceramic actuators, however, is their lack of accuracy due to hysteresis nonlinearity and drift. The maximum error due to hysteresis can be as much as 10-15% of the path covered if the actuators are run in an open-loop fashion. Hence, the accurate control of piezoceramic actuators requires a control strategy that incorporates some form of compensation for the hysteresis. One approach is to develop an accurate model of the hysteresis and the use the inverse as a compensator. The Preisach model has frequently been employed as a nonlinear model for representing the hysteresis, because it encompasses the basic features of the hysteresis phenomena in a conceptually simple and mathematically elegant way. In this paper, a new numerical inversion scheme of the Preisach model is developed with an aim of compensating hysteresis in piezoceramic actuators. The inversion scheme is implemented using the first-order reversal functions and is presented in a recursive form. The inverted model is then incorporated in an open-loop control strategy that regulates the piezoceramic actuator and compensates for hysteretic effects. Experimental results demonstrate satisfactory regulation of the position of the piezoceramic actuator to the desired trajectories.

  • PDF

Modified Multi-bit Shifting Algorithm in Multiplication Inversion Problems (개선된 역수연산에서의 멀티 쉬프팅 알고리즘)

  • Jang, In-Joo;Yoo, Hyeong-Seon
    • The Journal of Society for e-Business Studies
    • /
    • v.11 no.2
    • /
    • pp.1-11
    • /
    • 2006
  • This paper proposes an efficient inversion algorithm for Galois field GF(2n) by using a modified multi-bit shifting method based on the Montgomery algorithm. It is well known that the efficiency of arithmetic algorithms depends on the basis and many foregoing papers use either polynomial or optimal normal basis. An inversion algorithm, which modifies a multi-bit shifting based on the Montgomery algorithm, is studied. Trinomials and AOPs (all-one polynomials) are tested to calculate the inverse. It is shown that the suggested inversion algorithm reduces the computation time up to 26 % of the forgoing multi-bit shifting algorithm. The modified algorithm can be applied in various applications and is easy to implement.

  • PDF

Trajectory Guidance and Control for a Small UAV

  • Sato, Yoichi;Yamasaki, Takeshi;Takano, Hiroyuki;Baba, Yoriaki
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.2
    • /
    • pp.137-144
    • /
    • 2006
  • The objective of this paper is to present trajectory guidance and control system with a dynamic inversion for a small unmanned aerial vehicle (UAV). The UAV model is expressed by fixed-mass rigid-body six-degree-of-freedom equations of motion, which include the detailed aerodynamic coefficients, the engine model and the actuator models that have lags and limits. A trajectory is generated from the given waypoints using cubic spline functions of a flight distance. The commanded values of an angle of attack, a sideslip angle, a bank angle and a thrust, are calculated from guidance forces to trace the flight trajectory. To adapt various waypoint locations, a proportional navigation is combined with the guidance system. By the decision logic, appropriate guidance law is selected. The flight control system to achieve the commands is designed using a dynamic inversion approach. For a dynamic inversion controller we use the two-timescale assumption that separates the fast dynamics, involving the angular rates of the aircraft, from the slow dynamics, which include angle of attack, sideslip angle, and bank angle. Some numerical simulations are conducted to see the performance of the proposed guidance and control system.

Pile Depth Prediction by Magnetic Logging (자력검층을 이용한 파일 심도 예측)

  • 김진후
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.231-236
    • /
    • 2000
  • In order to predict depth of the pile forward modeling and inversion of magnetic logging data was conducted by using a finite line of dipoles model. The horizontal component as well as the vertical component of magnetic fields can be measured in the borehole, and the magnetic anomalies can be obtained by subtracting the Earth's magnetic field from the measurement. The magnetic anomalies of the pile are considered as vector sum of induced magnetization due to the Earth's magnetic field and remnant magnetization possessed by steel strings in the pile. The magnetic anomalies are used as input data for inversion from which the length, the magnetic moment per unit length, and the dip angle of the pile can be obtained. From the inversion of synthetic noisy data, and the data obtained from the field model test it is found that the driving depth of the pile can be determined as close to the order of measuring interval (5∼10㎝). It is also found that the resultant magnetic anomalies due to an individual steel string in the pile are almost same as those due to a group of steel strings located at the center of the pile. The magnetic logging method also can be used for locating reinforced bars, pipes, and steel casings.

  • PDF

Fabrication and Properties of MIS Inversion Layer Solar Cell using $Al_2O_3$ Thin Film ($Al_2O_3$ 박막을 이용한 MIS Inversion Layer Solar Cell의 제작 및 특성평가)

  • Kim, Hyun-Jun;Byun, Jung-Hyun;Kim, Ji-Hun;Jeong, Sang-Hyun;Kim, Kwang-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.242-242
    • /
    • 2010
  • 산화 알루미늄($Al_2O_3$) 박막을 p-type Czochralski(CZ) Si 위에 Remote Plasma Atomic Layer Deposition(RPALD)을 이용하여 저온 공정으로 증착하였다. Photolithography 공정으로 grid 패턴을 형성한 후 열 증착기로 알루미늄을 증착하여 MIS-IL (Metal-Insulator-Semiconductor Inversion Layer) solar cell을 제작하였다. 반응소스로는 Trimethylaluminum (TMA)과 $O_2$를 이용하였다. $Al_2O_3$ 박막의 전기적 특성 평가를 위해 MIS capacitor를 제작하여 Capacitance-voltage (C-V), Current-voltage (I-V), Interface state density ($D_{it}$)를 평가하였으며 Solar simulator를 이용하여 MIS-IL Solar cell의 Efficiency을 측정하였다.

  • PDF

Application of Temperature Inversion by Using Spectral Radiation Intensities (파장별 복사강도를 사용한 온도 역계산의 적용)

  • Yang, Soo-Seok;Song, Tae-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.4
    • /
    • pp.533-542
    • /
    • 2000
  • Analytical experiments to determine the line-of-sight temperature distribution is conducted by using spectral radiation intensities. For this study, fourteen narrow bands of $25cm^{-1}$ interval in $CO_2\;4.3{\mu}m$ band ($2,050cm^{-1}$ to $2375cm^{-1}$) are selected. The applied system is a one-dimensional gas slab filled with 100% $CO_2$ gas at 1 atm. Two types of temperature profile are tested; parabolic and boundary layer types. Three kinds of radiation calculation are used in the iteration procedure for the temperature inversion; LBL(Line by Line), SNB(Statistical Narrow Band) and WNB(WSGGM. based Narrow Band) models. The LBL solution shows perfect agreement while some error of temperature prediction is caused by radiation modeling error when using SNB and WNB models. The inversion result shows that the WNB model may be used more accurately in spectral remote sensing techniques than the traditional SNB model.