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Hysteresis Compensation in Piezoceramic Actuators Through Preisach Model Inversion

C.Y. Chung(IAE), D. H. Lee(IAE), H. S. Kim (IAE)

ABSTRACT

In precision positioning applications, such as scanning tunneling microscopy and diamond turning machines
[1], it is often required that actuators have nanometer resolution in displacement, high stiffness, and fast
frequency response These requlrements are met by the use of piezoceramic actuators. A major limitation of
piezoceramic actuators, however, is their lack of accuracy due to hysteresis nonlinearity and drift. The maximum
error due to hysteresis can be as much as 10-15% of the path covered if the actuators are run in an open-loop
fashion. Hence, the accurate control of piezoceramic actuators requires a control strategy that incorporates some
form of compensation for the hysteresis. One approach is to develop an accurate model of the hysteresis and the
use the inverse as a compensator. The Preisach model has frequently been employed as a nonlinear model for
representing the hysteresis, because it encompasses the basic features of the hysteresis phenomena in a
conceptually simple and mathematically elegant way.

In this paper, a new numerical inversion scheme of the Preisach model is developed with an aim of
compensating hysteresis in piezoceramic actuators. The inversion scheme is implemented using the first-order
reversal functions and is presented in‘a recursive form. The inverted model is then incorporated in an open-loop
control strategy that regulates the piezoceramic actuator and compensates for hysteretic effects. Experimental
results demonstrate satisfactory regulation of the position of the piezoceramic actuator to the desired trajectories.
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1. Introduction controllers could be designed to correct these effects and
the whole controller system could be made to appear as a
device with a single-valued output function and possible
even a linear device.

Hence, the accurate control of piezoceramic actuators
requires a contro! strategy that incorporates some form of
compensation for the hysteresis. One approach is to
develop an accurate model of the hysteresis and the use
the inverse as a compensator. The Preisach model has
frequently been employed as a nonlinear model for
representing the hysteresis, because it encompasses the
basic features of the hysteresis phenomena in a
conceptually simple and mathematically elegant way. The
problem of determining of the Preisach model and its
inverse for a piezoceramic actuator has been addressed by
several researchers {2}-{5].

In this paper, a new numerical inversion scheme of the
Preisach model is developed with an aim of compensating
hysteresis in piezoceramic actuators. The inversion
scheme is implemented using the first-order reversal
functions and is presented in a recursive form. The
inverted model is then incorporated in an open-loop

In precision positioning applications, such as scanning
tunneling microscopy and diamond turning machines [1],
it is often required that actuators have nanometer
resolution in displacement, high stiffness, and fast
frequency response. These requirements are met by the
use of piezoceramic actuators. A major limitation of
piezoceramic actuators, however, is their lack of accuracy
due to hysteresis nonlinearity and drift. The maximum
error due to hysteresis can be as much as 10-15% of the
path covered if the actuators are run in an open-loop
fashion.

Without modeling and incorporating hysteresis in the
controller design, the hysteresis will act as an unmodeled
phase lag presence and will cause instability in a close-
loop control system. Reliable modeling and predictions of
hysteresis would be a valuable tool when these
piezoceramic actuators as part of close-loop system for
purposes of motion control system such as active control
and micro-positioning. If hysteresis effects of these
material systems could be predicted, then actuator
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control strategy that regulates the piezoceramic actuator
and compensates for hysteretic effects. Experimental
results demonstrate satisfactory regulation of the position
of the piezoceramic actuator to the desired trajectories.

2. Preisach Model and a Recursive Formula

2.1 Preisach Model
A hysteresis system I with input signal #(7) and
S be the

superposition of an infinite number of elementary
hysteresis operators with

oulput  signal can represented by

+ 1 for u(t) >z
-1 for u(t) < p

remainsunchanged fora < u(t) < 8

Vo) = (H

.
Yol

+1

~{

Fig. 1 Transfer characteristic of the elementary hysteresis
operator

Fig. 1 displays the system behavior of this operator.
With the density function P(a, ff) representing the
Preisach function, the classical Preisach model for a
hysteresis system is defined by

f0 = tu@) = [[Pa, Bfut)dadg @
azp

The investigation of model (2) is considerably

facilitated by its geometric interpretation. This

interpretation is based on the fact that there is a one-to-one
correspondence between operators ¥ af and points

(a, ) of the half plane «
T

>

f . Atany instant of time,
is subdivided into two sets:

(a, ) which
}?aﬂu(t) =1 and S (1) consisting of points (a, B)

the support triangle

S+(1) consisting of points for

for which f/aﬂu(t) = —1. The staircase separation

curve between S+(t) and S (¢) is denoted L(t)
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and its vertices have (a. ) coordinates coinciding with
local maxima and minima of input at previous instants of
time. The final link of L(s) is attached to -the line
a = f# and moves when the input changes. This link is a

horizontal one and moves up when the input increases. and
it is a vertical one and moves from right to left when the
input decreases. Using the above interpretation, the model
(2) can be represented in the following equivalent form:

S (@) = [lg+(py Pla, B) dadB - [lg—(;) Pla, B) dadf
3)
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Fig. 2 A geometric interpretation of the Preisach model

To determine P(a, ), the set of first order reversal

curves should be experimentally found. This can be done
by bringing first the input to such a value that outputs of

all operators ¥ are equal to -1. If we now gradually
pe }’aﬁ

increase the input value, then we will follow along a
limiting ascending branch (see Fig. 3). This branch is
called limiting because there is no branch below it. The

notation f,, will be used for the output value on this

branch corresponding to the input v = o . The first-
reversal curves are attached to the limiting ascending
branch. Each of these curves is formed when the above
monotonic increase of the input is followed by a

subsequent monotonic decrease. The notation [, i will
be used for the output value on the reversal curve attached
to the limiting ascending branch at the point f,, . This

output value corresponding to the input u = £ . Now we
can define the function:

Fla, p) =/, = fop)/ 2 *

Using the geometric interpretation of the model, it is
easy to prove that:

Few )= [[Panday = [ [ Pooiacy ©

Ty A

where T(a, ) is the triangle formed by the intersection



ofthe ines @ = ay, f= B and @ = f (see Fig
3). From (5), we find

_ ' F(a, B)
ofea

Pla, ) = ©

\
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the limiting ascending curve

f//
]

/’

Fig. 3 First-order reversal curves.

(. %)

Fig. 4 Graphical representation of (5)
2.2 Recursive Formula

We derive a recursive formula for the model. Assume
that the input has the latest local maxima ¢, at the time

Lo, and the latest local minima By, at the time tﬂ,\'-,’

And assume that the input is monotonically decreasing and
not less than By, ie. u()y < 0, u(t) 2 By, - As

shown by Fig. 5, the region S§*(r) is the difference of -

ST, ) and AS ie.

5*(0) = §°(t,,) ~ AS ™
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Fig. 5 Interpretation for the decreasing input

Using S7(1) = T, -S"(t)- (3) can be represented as

follows:

1@y= fy+2 [[Pla. prdadp, f, = [[Pa, p)dadp
ST T

¥

Using (7) and (4), (8) becomes

@0 = fy+2 [[Pla, p)dadB - 2 [[P(a, B) dadpp
S ) AS

= 10,.) - 2F(ey, u(t)
= f(la‘.\,) - [fa\, - fa,\rl/(l)]
9

To sum up, for the decreasing input the output of the
model becomes

F0) = f. )=, = Sfupin] for a(t) <0,u(t) z By
(10)

Assume that the input has the latest local maxima ¢,
at the time I and the latest local minima B, at the
time ¢ b And assume that the input is monotonically

N

increasing and  not  larger  than ay i.e.

u(t) > 0, u(t) < &, - As shown by Fig. 6, the region
S*(¢) is the sum of S*(t,) and AS ie.

Sty = 87 (1) + AS an

Similarly in the decreasing case, we can get the following:

f(’) = f(lp‘\. ) + [f.m) - ./;1(/)/9.\,] for u(r) > 0, ll(t) < ay
(12)
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Fig. 6 Interpretation for the increasing input

In order to implement the model equations (10) and
(12) to estimate the piezoceramic expansion due to an
arbitrary voltage input, a series of first-order reversal
function for the specific piezoelement being used are
experimentally determined. These functions need to be
determined for all pairs (¢, #) within the limiting triangle
T, In this work, a mesh covering the ¢ — S plane is
created, and a corresponding value F(q,, ﬁ/) is
experimentally obtained. In practice, the finite numbers of
grid points and corresponding measured output values are
insufficient i.c. some actual values of the input voltages
are not on grid points. Thus, the mesh is divided into the
finer form and the bilinear spline interpolation is
employed to obtain the first-order reversal functions.

3. Numerical Inversion

Consider the case a desired output is decreasing. At
the time ¢, assume that we know Ay 1, and f(faN )-

We make an assumption that if a desired output is
decreasing  f(¢ + A1) < f(r) then the corresponding
input is not increasing  u(r + Ar) < u(t) - Using (10), we
can find the input needed to produce the desired output:

ut+ AN = g (13
= n;in( )[F(d,v,/i) —{fe+an- fi, Nl

where ¢, = min [ay —a,]
J :

Consider the case a desired output is increasing. At the

time f, assume that we know B ton and f(,ﬂ\'), We

make an assumption that if a desired output is increasing
St + Aty > f(t) then the corresponding input is not
decreasing wu(t + Af) > u(r) . Using (12}, we can find the
input needed to produce a desired output:
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wt+ A = o

ioa,zult)

(14)

where 5 min 16, ~ 4]

4. Experimental Results

The experimental setup is shown in Fig. . A fast tool
servo is used in this experiment. a piezoceramic actuator is
incorporated into the mechanical structure and its
displacement is measured through a capacitive
displacement sensor. An NI DAQ board was used to
produce an input signal, record the input voltages and tip
displacement of a piezoceramic actuator.
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Fig. 7 Experimental setup

A desired output signal is as follows:

L) = 2[1 — cos(0.2m) cos(0.02x1)] Volt, 0 < t < 200 sec

(15)

Using Eq. (13) and (14), the corresponding input was
computed and input into a power amplifier. The sensor
outputs one voltage per 2.5 ygmtranslation of the tip. Data

was recorded using a NI DAQ board. Each data set
consisted of the samples (., 1) where the term u, is

a sample of the output voltage from the NI board to the
power amplifier, and the term f, is a sample of the

displacement sensor output voltage. Data was sampled at 1
KHz and 20,000 samples were recorded. This was 20
seconds of data or 2 cycles of the desired output voltage.
The samples (u,, f,) were plotted in Fig. 8.

The desired output and real output displacement
voltage were plotted in Fig. 9. The maximum absolute
error between the desired and real output data is 0.091 V
which is 1.38 % of the maximum input voltage. The error
mean is 0.023 V which is 0.36 % of the maximum input

min [Fla,. By) = (/¢ +AD = f(1, )]



voltage. The results show satisfactory regulation of the
position of the piezoceramic actuator to the desired

trajectories.
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