• Title/Summary/Keyword: Inverse scattering

Search Result 138, Processing Time 0.024 seconds

Aspects on Nonuniqueness and Instability Inherent in Inverse Scattering Problems

  • Kim, Se-Yun
    • Journal of electromagnetic engineering and science
    • /
    • v.3 no.2
    • /
    • pp.133-139
    • /
    • 2003
  • The nonuniqueness of a mathematically rigorous solution to 2-dimensional inverse scattering problems is explained in a limiting view of the numerical calculations based on the spectral-domain moment method. It is illustrated that its theoretical uniqueness cannot be assured even by performing additional measurements of the scattered fields not only along multiple lines but also with angular/frequency-diversities. In a real situation, however, computational error and measurement noise are inevitable. Those limitations render it meaningless to controvert the existence of a theoretically rigorous solution. Hence the most practical issue is how to remedy the instability of its practically approximate solution.

A New Inverse Scattering Technique Using the Moment Method in the Spectral Domain , I : Theory (파수영역에서 모멘트 방법을 이용한 새로운 역산란 방법 , I : 이론)

  • Kim, Se-Yun;Lee, Jae-Min;Ra, Jung-Woong
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.10
    • /
    • pp.1141-1149
    • /
    • 1988
  • The inverse scattering scheme, which was exploited for the reconstruction of complex permittivity profiles of 2-dimensional dielectric objects by using the moment method in the spatial domain, is modified to be applicable in the spectral domain. The presented scheme is conceptually simple and provides some proper ways to regularize the ill-posed characteristics inherent to the inverse scattering problems.

  • PDF

Use of Rigid Scattering Body in the use of NAH based on the inverse BEM (역경계요소법에 근거한 근접 음향 홀로그래피에서 강체 산란체의 이용)

  • 김성일;정지훈;이정권
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.486-489
    • /
    • 2004
  • The NAH based on the inverse BEM is used to reconstruct the source field, which is advantageous in dealing with the irregular source. In the implementation of this technique, a large number of pressure measurements is required because an over-determined pressure data set is required. These conditions accordingly cause the increase of measurement time and associated effort along with the error due to mal-positioning. The purpose of this study is to reduce such inconveniences: Instead of increasing the number of field pressure data, the number of transfer paths between the source and the receiver is increased by placing rigid scattering body in-between the source and receiver. For validating the usefulness and effectiveness of the method, the numerical analyses of interior problem are demonstrated. As a result, it is thought that the proposed method enables the measurement at smaller number of sensor positions and the monitoring of surface vibration with less experimental effects than before.

  • PDF

Solution of Gel'fand-Levitan-Marchenko Integral Equation with Restricted Inverse Scattering Potential and Its Applications to Synthesis of Dielectric Constant Distribution (제한된 범위의 역산란 포텐셜을 갖는 Gel'fand-Levitan-Marchenko 적분방정식의 해와 유전율 분포 합성에의 응용)

  • Jang, Wan-Gyu;Jung, Hyun-Soo;Park, Eui-Joon
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.54-58
    • /
    • 2003
  • In this study, the solution of Gel'fand-Levitan-Marchenko integral equation in the inverse scattering problem is efficiently solved for arbitrarily specified spectra pattern which are reflected from the restricted potential. The procedure is based on the successive approach without iterations. This method lessens the truncation errors which plague conventional design schemes using specific windows for reflection coefficients. It is shown that the method is adequate for the synthesis of the continuously varying one-dimensional potential of the nonuniformly distributed dielectric constants.

  • PDF

Performance Improvement for 2-D Scattering Center Extraction and ISAR Image Formation for a Target in Radar Target Recognition (레이다 표적 인식에서 표적에 대한 2차원 산란점 추출 및 ISAR 영상 형성에 대한 성능 개선)

  • Shin, Seung-Yong;Lim, Ho;Myung, Noh-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.8
    • /
    • pp.984-996
    • /
    • 2007
  • This paper presents techniques of 2-D scattering center extraction and 2-B ISAR(Inverse SAR) image formation for scattering wave which is scattered by a target. In general, 2-D IFFT is widely used to obtain 2-D scattering center and ISAR image of targets. But, this method has drawbacks, that is poor in a resolution aspect. To overcome these shortcomings with the FT(Fourier Transform)-based method, various techniques of high resolution signal processing were developed. In this paper, algorithms of 2-D scattering center extraction and ISAR image formation such as 2-D MEMP(Matrix Enhancement and Matrix Pencil), 2-D ESPRIT(Estimation of Signal Parameter via Rotational Invariance Techniques) are described. In order to show the performances of each algorithm, we use scattering wave of the ideal point scatterers and F-18 aircraft to estimate 2-D scattering center and abtain 2-D ISAR image.

MOM-Based Born Iterative Method for Medical Microwave Imaging (의용 전자파 영상을 위한 MoM 기반 Born 반복법의 적용)

  • Son, Jae-Gi;Kim, Bo-Ra;Lee, Taek-Kyung;Son, Seong-Ho;Jeon, Soon-Ik;Lee, Jae-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.4
    • /
    • pp.524-532
    • /
    • 2012
  • In this paper, we used MOM-based BIM(Born Iterative Method) algorithm to implement the inverse scattering for the detection of cancer. We adopted two-dimensional breast structure, integral equations and two-dimensional Green's function is solved with MoM(Method of Moment) to analyzing electromagnetic scattering phenomena. In addition, verifying the calculation of developed inverse scattering algorithm and analyzing medical applicability and limitations of the algorithm.

Control of One Dimensional Inverse Scattering Pattern and Its Applications (일차원 역산란 패턴 제어와 그 응용)

  • 최종인;박의준
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.2
    • /
    • pp.291-301
    • /
    • 1999
  • A method for the synthesis of one-dimensional nonlinear distribution function is presented for the desired inverse scattering pattern. This method is based on the inverse transform of the solution of the Riccati equation derived from one-dimensional inverse scattering problem. Since the solution is analogous to the array factor or normalized space factor in collinear array antenna, the synthesis method for field pattern is applied for the construction of the involved line-source nonlinear distribution function. The suggested method is carried out under the optimization process, and is numerically verified by synthesizing the dispersive transmission line profile within the specified frequency band and control of scattered field on resistive strip.

  • PDF

Inverse Scattering of Two-Dimensional Objects Using Linear Sampling Method and Adjoint Sensitivity Analysis

  • Eskandari, Ahmadreza;Eskandari, Mohammad Reza
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.308-313
    • /
    • 2015
  • This paper describes a technique for complete identification of a two-dimensional scattering object and multiple objects immersed in air using microwaves where the scatterers are assumed to be a homogenous dielectric medium. The employed technique consists of initially retrieving the shape and position of the scattering object using a linear sampling method and then determining the electric permittivity and conductivity of the scatterer using adjoint sensitivity analysis. Incident waves are assumed to be TM (Transverse Magnetic) plane waves. This inversion algorithm results in high computational speed and efficiency, and it can be generalized for any scatterer structure. Also, this method is robust with respect to noise. The numerical results clearly show that this hybrid approach provides accurate reconstructions of various objects.

Parametric Inverse Scattering for Lossless Dispersive Media with Enhanced Robustness

  • Park, Hyoung-Jin;Lee, Sang-Seol
    • Journal of electromagnetic engineering and science
    • /
    • v.3 no.1
    • /
    • pp.57-61
    • /
    • 2003
  • The effects of high frequency noises on a perturbational inversion technique for a stratified dispersive medium are investigated in this paper. It is shown that the perturbational solution becomes unstable under high frequency noises. The physical origin of this instability is described. In order to enhance the robustness of the perturbational inverse scattering solution, a parametric inversion technique is introduced. The examples for the 2-pole and the 3-pole reflection coefficients are compared and contrasted, and improvement of the robustness of the solutions is shown.