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Abstract

The nonuniqueness of a mathematically rigorous solution to 2-dimensional inverse scattering problems is explained
in a limiting view of the numerical calculations based on the spectral-domain moment method. It is illustrated that
its theoretical uniqueness cannot be assured even by performing additional measurements of the scattered fields not
only along multiple lines but also with angular/frequency-diversities. In a real situation, however, computational error
and measurement noise are inevitable. Those limitations render it meaningless to controvert the existence of a
theoretically rigorous solution. Hence the most practical issue is how to remedy the instability of its practically

approximate solution.
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T . Introduction

Electromagnetic scattering problems are divided
oroadly into two categories. One is forward scattering
aroblem to predict the waves disturbed by a known
constitution of objects. The other is inverse scattering
oroblem to estimate the location, geometry, and internal
characteristics of unknown objects from the mea-
surement of those scattered fields. One of striking
distinctions between forward and inverse scattering
oroblems is the uniqueness of those solutions. In usual,
‘orward scattering problems can be solved uniquely
ander general conditions realizable in a practical
situation. But the uniqueness posed in the inverse
scattering problem is still in a controversy. One of
counterevidences against the uniqueness posed in
inverse scattering problems has been considered the
=xistence of nonradiating sources™. In consequence,
the present issue is what kinds of prior informations
and/or constraints need to eliminate unreal solutions
generated from nonradiating sources™™.

At the core of difficulties to clear up the argued
point of the nonuniqueness is no method to solve
inverse scattering problems rigorously. Several analysis
tools are available to solve forward scattering problems
rigorously. However, those applicabilities to 2- and
3-dimensional inverse scattering problems are hampered
because the effects of refraction and diffraction cannot
be accounted exactly. It makes conventional inverse
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scattering algorithms mostly rely on heuristic assump-
tions to the actual wave motion through the scattered
media. Typical examples are straight-line propagation
of high-frequency waves®, Born and Rytov approxi-
mations of the induced field over slightly refractive
media®", physical optics approximation for conducting
scatterers”, etc. Hence, in spite of providing practically
approximate solutions, conventional inversion schemes
cannot play an adequate role on criticizing the non-
uniqueness of its theoretically rigorous solution.

It is well recognized that numerical techniques as the
finite element methodm, moment method“O], boundary
element method!"!, etc. are now established well as
leading tools in the treatment of forward scattering
problems. Some investigators have turned their attention
to the extension of the moment method procedures to
inverse scattering problems. Those numerical results
have shown that complex permittivity distributions on
2- and 3-dimensional inhomogeneous dielectric objects
could be reconstructed very accurately!? U8 In recent,
an alternative algorithm has been developed by em-
ploying the moment method procedure in the spectral
domain "% The inverse scheme can be derived
rigorously from the integral equation governing the
wave motion in inhomogeneous dielectric objects under
only one assumption. It is the approximation of induced
source distribution over each discretized cell to pulse
basis. The above approximation is also considered exact
if the size of each discretized cell decreases infinitely
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small. Hence, the spectral-domain inverse scheme
becomes adequate to deal with the nonuniqueness of its
theoretically rigorous solution.

Based on the spectral-domain moment method proce-
dure, numerical aspects on two canonical issues posed
in inverse scattering problem are presented here. The
first issue is the nonuniqueness of its theoretically
rigorous solution to the inverse scattering problem in an
ideal situation. In a real situation, however, a theo-
retically rigorous solution to inverse scattering problem
is meaningless because measurement error, noise, and
computational error are inevitable. It leads us to
concern the second issue, which is the instability of a
practically approximate solution to the same inverse
scattering problem™'). For convenience, the reconst-
ruction of 2-dimensional permittivity distributions over
an inhomogeneous dielectric cylinder is treated here.

II. Nonlinear Equation to Inverse Scattering Problem

Consider 2-dimensional electromagnetic scattering by
a dielectric cylinder as shown in Fig. 1. Relative
dielectric constant e(x y) is distributed over its arbitrary
cross-section S. The region outside the cylinder, V is
assumed free-space with wavenumber k;. When an
E-polarized field ui(x y) is incident on the cylinder, the
total field wu(x y) satisfies the following integral equa-
tions as

u(x,3) = ulx,y) + ki f_wmfi]s(x"yv)G(x,y;x',y';ko).

ddy,in S+V (1)
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Fig. 1. Two-dimensional electromagnetic scattering by an

inhomogeneous dielectric cylinder with arbitrary
cross section.
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where J; denotes the induced current distribution as
Jx,v) = [e(x,3) —1]ulx,y) , in S+V )

In (1), G denotes 2-dimensional free-space Green's
function. It should be noted that (1) and (2) are valid
not only on V but also on S.

Our inverse scattering problem is how to reconstruct
¢lx y) on S exactly from the known scattered field u(x,
y) on V. In this case, the incident field u:(x y) is known
on S and V. From measurement outside the dielectric
cylinder, u(x, y) is also known on V. Hence, as initial
data, u,(x y) on V is obtained by u(x y) -u;(x, y). It should
be noted that u(x, y) on S is not known. In a
mathematical point, the function f : u(x, y) on V —¢lx
y) on S is nonlinear. The nonlinear property can be
easily proved because N times of u(x y) on V cannot
provide N times of &(xy) on S. In general, there is no
way to solve such a nonlinear equation exactly.

Then, how can we solve the nonlinear equation
consisting of (1) and (2) in practice? One way is the
approximation of the nonlinear equation into a linea-
rized equation under some physical constraints. Under
one of those physical constraints, the approximately
linearized equation can be solved to obtain a ma-
thematically approximate but practically useful solution.
For example, diffraction tomographym has been widely
used for microwave imaging of dielectric object. It is
well recognized that in diffraction tomography, multiple
incident fields(angular-diversity) play an important role
on obtaining a practical solution uniquely. But its
reconstructed image cannot become rigorous in view of
a mathematical point because diffraction tomography
algorithm itself can be formulated only under such a
physical assumption as the Born or Rytov appro-
Ximation. It leads us to conclude that a theoretically
rigorous solution cannot be obtained by solving such an
approximately linearized equation instead of the original
nonlinear equation.

Let us consider another linearization method. Instead
of relating e(x y) with u(x y) directly, we introduce an
intermediate parameter, Ji(x, y). In (1), one may find that
Jx y) is linearly related to us(x, ). Assume that Jf(x, y)
can be obtained by solving (1) on V. Applying Jk(x y)
into (1), and then solving (1) on S, one may obtain u(x
y) on S. Then, e(x y) is routinely obtained from 1+ J(x
v/uly ) on S. In the next section, the above
linearization process is implemented by using the
moment method in the spectral domain.

. Moment Method Procedure in Spectral Domain
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Taking the spectral field Ulx 3) as the Fourier
transform of the total field u(x y) in y, one may rewrite
(1) into [17]

Kz, B = Ulx, D+ Flx,AEP) (3)

where
22
F(x, = —Tgﬁ7€xp(ij\f K~ B x) )

18 = [ [ avayle(x,s)—1u(x,).
exp (7 K, — B + iBy") ©)

In (4) and (5), two algebraic signs in front of
\ B2— g% are used for x>x' (upper) and x<x' (lower).

To calculate (5) numerically, the rectangular region R
including S is discretized into MN numbers of
ractangular cells uniformly, as shown in Fig. 2. Let R
designate the mn-th cell with the center at (x,, »,) and
tie area 2diX2d,. The only assumptions in this
cerivation are as following;

u(x, y) = u(xm,yn) = U, in Rmn (63.)

&(x,y) = &KXy, Vu) = Epn, MR, (6b)

Substituting (6) into (5), and then integrating over
each discretized cell, one may obtain a simple form of

() as

18 = B 3. 3 Cor Al ™
where
p— 2d,—4
Emn T
. /,.—; . 2da
(xm . yn) l
Soan

2d,N

lem |
I 2diM )

=ig. 2. Discretization of arbitrary cross section into M Xx
N numbers of rectangular cells.

2sin(y £~ 8 d\/2) exp(— i B=Fd/2) 25ir1;,8d2)

ky— 812
,for x=x,
BB =
@ 2sin (Y ki“ﬂzdl) 2sin ( Ad-)
VE—§ 8
,for x#x,, (8)
exp GV Ai— B x,+i8v.)  , for x>1x,,
G B = { ®
exp{—jV Bo— B xn+ iy, , for x<{x,
Imn = (Emn~ l)umn (10)

Substitution of (7) into (3) yields

Uk, B = Ul )+ Flx, DB 35 3 G AL, 1D

IV. Inverse Scattering Procedure

We now consider the inverse scattering procedure to
reconstruct MN numbers of ¢,,. For initial data, Ulx,,
8) is known by taking the Fourier transform of the
total field u(x, y) measured at x=x, And [J (x, 8) is also
obtained from the known incident field u:(x,y) at (x=x,).
After choosing L numbers of discrete B, 8 for =1, 2
,++, L, one may obtain the matrix equation as,

[2) =V (12)

where / is the column vector of unknown pulse
expansion coefficients of the equivalent currents in-
duced in the discretized cells, of which elements are
defined by (10). And both elements of the MN by L
matrix [Z] and the L column vector V are given by

Zom 1 = Gmn( B (13)

U(le,Bl)_ Ui(xq,Bz) (14)
F(xq,BI)B(Bl)

V/z

Then, the reconstruction of MN numbers of &,, can
be implemented by following three steps;

step 1: evaluate /.. by performing inversion of the
matrix [Z] in (12),

step 2: substitute ., into (11), and then calculate w,
by taking the inverse Fourier transform of Ulx, 8) at (x
=X

step 3: reconstruct e. by calculating the ratio of I
t0 #m, in the cell R

In the first step, an inverse source problem must be
solved to estimate the induced source distribution over
the dielectric object from the scattered field measured
outside the object. And the second step looks like to
solve a radiation problem.

135



JOURNAL OF THE KOREA ELECTROMAGNETIC ENGINEERING SOCIETY, VOL. 3, NO. 2, NOV. 2003

One of interesting features in (11) is that the effects
of measurement location, basis function, and geometry
of objects are separated into F(x A), B(8) and G.(8),
respectively. For example, another basis function may
be employed in (6) instead of the pulse basis. Even in
this case, all the functions involved in (11) still hold
except of changing B(f) in (8). Furthermore, the
exchanged function of B(f8) is also expressed in the
analytic form for a number of different basis expan-
sions since the integrand in (5) has no singularities over
the integration region“sl.

The above spectral inverse scattering algorithm is
implemented numerically. Fig. 3 illustrates a test geo-
metry of di=d=0.05 A (wavelength), x, =14, M=1,
and N=L=24. Simulation results for three different
dielectric constant profiles are shown in Fig. 4, where
bold lines are original profiles and three different
markers denote the reconstructed values at the center of
each cell. The reconstruction errors appear negligible,
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Fig. 3. A test geometry for di=d»=0.05 A, x,=1 1, M=1,
and N=24.

40 rTr Ty T TTTT T T TT T T T T T

- -

N [&]
(=] (=]
T

;v

¢

[

j?

]

[

4
3
p
]
b
P
b
7
4

1 {

: origingl profiles
o oo000 ; reconstructed values -

FUNT IS NN SN K T T VO W06 U 0% TR T % A S 20 T Y O
0 4 B 12 16 20 24
cell number

dielectric constant
2 p ¢
1
\
[
Z

g
o

Fig. 4. Three different profiles of relative dielectric con-
stant reconstructed from the scattered fields with-
out noise.
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in spite of including the round-off error in numerical
analysis and the approximate expansion of the field
over the discretized cells by pulse basis.

V. Nonuniqueness and Instability

We now consider the nonuniqueness of a theoreti-
cally rigorous solution to the underlying inverse sca-
ttering problem in an ideal situation. When the size of
each discretized cell is reduced infinitely small, the
approximation involved in (6) may be considered exact.
It implies that the presented inverse scattering formu-
lation is rigorous if both M and N become infinite.
Then, our question is whether the exact dielectric con-
stant profile can be reconstructed uniquely or not by
employing such the rigorous inverse scattering for-
mulation. For convenience, and without loss of gene-
rality, both of computation error and measurement noise
are neglected perfectly. The answer is clearly no
because the number MN of total points in S is always
larger than the number L of total points along the line
x=x,. Although the area S is drastically small, the rank
of the matrix in (12) is always less than MN.

The nonuniqueness seems to be remedied by apply-
ing some additional treatments. One of intuitive app-
roaches is multiple measurement of the scattered fields
at Q number of the x=x, lines for g=1, 2,---, @, as
shown in Fig. 5. If LQ becomes equal to MN, the
matrix in (12) becomes square. It seems to provide a
unique solution. However, the measurement of the
scattered fields at several lines cannot increase the total
number of scattering data ¥;. From (11)~(14), one may
obtain

multi-line measurements

&(x,y)

Ei = 20“1‘ (x’ y)

X=X % X, X

Fig. 5. Multiple measurement of the scattered fields at
@ number of the x = x, lines for g=1, 2, ---, Q.
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Vi= 2 2 GBI (15)

Since the right side of (15) is independent of the
sarameter xg, ¥; in (15) is also independent of x,.

It leads us to conclude that the multiple-line meas-
arement cannot remedy the underlying nonuniqueness.

Then, one may suggest another approach as fre-
quency- or angular-diversity measurement of the
scattered fields. As shown in (3)~(5), an incident field
with different frequency or incident angle generates
another induced source distribution over S. In a pure
theoretical point, 7 number of different frequencies or
incident angles yield 7 number of different inverse
source problems. According to the presented inverse
scattering algorithm, the uniqueness of the inverse
scattering problem is assured only if its induced source
distribution should be obtained uniquely in advance. In
consequence, the underlying nonuniqueness cannot be
resolved even though frequency- or angular-diversity
measurements are performed additionally.

One may claim that if neglecting Ji(x y) and relating
elx y) to ulx y) directly, the angular-diversity mea-
surements help for solving the inverse scattering
problem uniquely. The reason is that e(y y) is inde-
pendent of the variation of wu{x . In this case,
however, our linearization scheme is broken due to loss
of the intermediate linearization parameter J(x y). Hence
the inverse scattering problem cannot be solved
uniquely even if using multiple incident fields.

In practice, however, the nonuniqueness of a rigorous
solution to the inverse scattering problem is beside the
point. Round-off error in computer calculation and the
noise in measurement of scattered field are inevitable in
a real situation. Then, our interest turns to the validity
of approximate solutions for some finite numbers of A,
N, and L. In this case, the uniqueness of an appro-
ximate solution is usually assured by taking a finite
number of L equal to MN. But the deviation from the
rigorous solution becomes a more serious problem. It
is called the instability or ill-posedness”!! inherent in
inverse scattering problems. For example, when the
scattered field in Fig. 4 is contaminated by 1 %
Gaussian random noise, the reconstructed image is
affected by a great amount of fluctuations, as shown in
Fig. 6. To obtain superresolution as fine as 0.1 x0.1
wavelength, the higher spectral components of induced
current distribution are required. But the exponentially
decaying behavior of G..(8) for |8l >k in (9) renders
the matrix [Z] in (12) unstable!"™. Hence, one may find
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Fig. 6. The relative dielectric constant profile reconstruc-
ted from the scattered fields contaminated by
1 % Gaussian random noise.

the optimal point between reducing this instability and
enhancing the resolution of reconstructed profiles.

One of methods to mediate this contradiction is
called regularization™, which means a compromise on
degradation of its resolution with improvement of the
instability. In our previous work™™, it was shown that
SVD(singular value decomposition) technique reduced
the root-mean-square error from 10° to 10™* in
reconstructed profile. And we have also found that the
Tikhonov regularization norm was effective on supp-
ressing the instability. In the spectral domain, the
low-pass ﬁltering“gl and the enlargement of the
discretized celi size® have revealed more powerful for
suppressing the reconstruction error even at the cost of
the resolution,

VI. Conclusions

Two canonical issues posed in the reconstruction of
2-dimensional permittivity profile over an inhomo-
geneous dielectric cylinder were illustrated by using the
moment-method procedure in the spectral domain. The
first issue was the nonuniqueness of a theoretically
rigorous solution to the inverse scattering problem in an
ideal situation. The underlying nonuniqueness was
explained by showing that the total number of known
scattering data could not exceed the required number of
unknowns. It was also shown that the total number of
knowns could not increase even from multi-line,
angular-diversity, and frequency-diversity measurements.
In a mathematical point, there is no general way to
solve the 2-dimensional inverse scattering problem
exactly and uniquely. This paper illustrated the same
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conclusion but in a different view, which was a limiting
aspect on the numerical calculations by using the
moment method in the spectral domain.

The second issue was the instability of a practically
approximate solution to the same inverse scattering
problem in a real situation including measurement error,
noise, computational error, etc. The uniqueness of a
practically approximate solution was assured by show-
ing that the total number of knowns could be equal to
the finite number of unknowns. One of interesting
features in the presented inversion scheme is that a
finer resolution of reconstructed images calls for many
discretized cells. However, a large amount of error in
the reconstructed images can be arisen from even a
negligible noise of the scattered field due to the fine
discretization of the scatterer. Hence, the most
important issue posed in practical inverse scattering
problems should be how to improve the accuracy of
those practically approximate solutions. It could be
implemented by compromising degradation of its re-
solution with improvement of its instability properly.
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