• Title/Summary/Keyword: Inverse design method

Search Result 355, Processing Time 0.039 seconds

Direct Just-in-time Methods for Nonlinear Control Design

  • Qiubao Zheng;Kim, Hidenori ura
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.93.4-93
    • /
    • 2001
  • Based on input and output data pairs of nonlinear systems, this paper proposes a simple and effective Just-In-Time (JIT) method, called Direct JIT Control, for nonlinear control design. It uses an inverse model of controlled plant to compute an initial control action, and then adapts the initial control action by adding a fine-tuning control action, depended on the errors between the real outputs and the expected reference signals. Meanwhile, the proposed JIT method accomplishes the adaptation of the inverse model just simply by means of the refreshment of input and output data pairs. In addition, the JIT modeling technique guarantees this method to obtain an approximate inverse model of the controlled nonlinear plant in the neighborhood of a query. Based on a ...

  • PDF

Optimum Inverse Design of 2-D Cascade Airfoil (2차원 익렬 익형의 최적역설계)

  • 조장근;박원규
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.4
    • /
    • pp.17-23
    • /
    • 2002
  • The present paper describes the optimum inverse design of 2-D linear cascade airfoil. The pressure coefficient of an airfoil surface is taken as the objective function, and non-orthogonal incompressible Navier-Stokes equation is applied to calculate the pressure coefficient. Both of steepest descent and conjugate gradient method have been used to make the objective function go to zero. The 1st order finite differential method is applied to the searching direction and the golden section method is used to compute the searching distance. As a result of the present work, a good convergence to the target airfoil has been obtained.

Analysis of Microwave Inverse Scattering Using the Broadband Electromagnetic Waves (광대역 전자파를 이용한 역산란 해석 연구)

  • Lee Jung-Hoon;Chung Young-Seek;So Joon-Ho;Kim Junyeon;Jang Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.2 s.105
    • /
    • pp.158-164
    • /
    • 2006
  • In this paper, we proposed a new algorithm of the inverse scattering for the reconstruction of unknown dielectric scatterers using the finite-difference time-domain method and the design sensitivity analysis. We introduced the design sensitivity analysis based on the gradient information for the fast convergence of the reconstruction. By introducing the adjoint variable method for the efficient calculation, we derived the adjoint variable equation. As an optimal algorithm, we used the steepest descent method and reconstructed the dielectric targets using the iterative estimation. To verify our algorithm, we will show the numerical examples for the two-dimensional $TM^2$ cases.

A ESLF-LEATNING FUZZY CONTROLLER WITH A FUZZY APPROXIMATION OF INVERSE MODELING

  • Seo, Y.R.;Chung, C.H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.243-246
    • /
    • 1994
  • In this paper, a self-learning fuzzy controller is designed with a fuzzy approximation of an inverse model. The aim of an identification is to find an input command which is control of a system output. It is intuitional and easy to use a classical adaptive inverse modeling method for the identification, but it is difficult and complex to implement it. This problem can be solved with a fuzzy approximation of an inverse modeling. The fuzzy logic effectively represents the complex phenomena of the real world. Also fuzzy system could be represented by the neural network that is useful for a learning structure. The rule of a fuzzy inverse model is modified by the gradient descent method. The goal is to be obtained that makes the design of fuzzy controller less complex, and then this self-learning fuzz controller can be used for nonlinear dynamic system. We have applied this scheme to a nonlinear Ball and Beam system.

  • PDF

Design of a Pump-Turbine Based on the 3D Inverse Design Method

  • Chen, Chengcheng;Zhu, Baoshan;Singh, Patrick Mark;Choi, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.1
    • /
    • pp.20-28
    • /
    • 2015
  • The pump-turbine impeller is the key component of pumped storage power plant. Current design methods of pump-turbine impeller are private and protected from public viewing. Generally, the design proceeds in two steps: the initial hydraulic design and optimization design to achieve a balanced performance between pump mode and turbine mode. In this study, the 3D inverse design method is used for the initial hydraulic impeller design. However, due to the special demand of high performance in both pump and reverse mode, the design method is insufficient. This study is carried out by modifying the geometrical parameters of the blade which have great influence and need special consideration in obtaining the high performance on the both modes, such as blade shape type at low pressure side (inlet of pump mode, outlet of turbine mode) and the blade lean at blade high pressure side (outlet of pump mode, inlet of turbine mode). The influence of the geometrical parameters on the performance characteristic is evaluated by CFD analysis which presents the efficiency and internal flow results. After these investigations of the geometrical parameters, the criteria of designing pump-turbine impeller blade low and high sides shape is achieved.

An Implementation of the Controller Design System Using the Runge Kutta Method and Genetic Algorithms (런지-커타 기법과 유전자 알고리즘을 이용한 제어기 설계 시스템의 구현)

  • Lee, Chung-Ki;Kang, Hwan-Il;Yu, Il-Kyu
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.259-259
    • /
    • 2003
  • Genetic algorithms using a Process of genetic evolution of an organism are appropriate for hard problems that have not been solved by any deterministic method. Up to now, the controller design method has been made with the frequency dependent specification but the design method with the time specification has gotten little progress. In this paper, we study the controller design to satisfy the performance of a plant using the generalized Manabe standard form. When dealing with a controller design in the case of two parameter configurations, there are some situations that neither a known pseudo inverse technique nor the inverse method can be applicable. In this case, we propose two methods of designing a controller by the gradient algorithm and the new pseudo inverse method so that the desired closed polynomials are either equalized to or approximated to the designed polynomial. Design methods of the proposed controller are implemented in Java.

A Study on the Design of a Controller with the Manabe Standard Form (Manabe표준형을 이용한 제어기 설계에 관한 연구)

  • Kang, Hwan-Il;Jung, Yo-Won
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.537-539
    • /
    • 1999
  • When dealing with a controller design in the two parameter configuration, there are some situations when neither a known pseudo inverse technique nor the inverse method can be applicable. In this case, we propose two methods of designing a controller by the gradient algorithm and the new pseudo inverse method such that the designed closed loop polynomial may be equal to or nearly equal to the desired closed loop polynomial. We compare the proposed methods with the known methods. We use the Manabe standard form as a desired closed loop characteristic polynomial.

  • PDF

Neural network control by learning the inverse dynamics of uncertain robotic systems (불확실성이 있는 로봇 시스템의 역모델 학습에 의한 신경회로망 제어)

  • Kim, Sung-Woo;Lee, Ju-Jang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.1 no.2
    • /
    • pp.88-93
    • /
    • 1995
  • This paper presents a study using neural networks in the design of the tracking controller of robotic systems. Our strategy is to put to use the available knowledge about the robot manipulator, such as estimation models, in the contoller design via the computed torque method, and then to add the neural network to control the remaining uncertainty. The neural network used here learns to provide the inverse dynamics of the plant uncertainty, and acts as an inverse controller. In the simulation study, we verify that the proposed neural network controller is robust not only to structured uncertainties, but also to unstructured uncertainties such as friction models.

  • PDF

Optimal Design of Dielectric shape and Topology using Smooth Boundary Topology Optimization Method (부드러운 경계 위상 최적설계기법을 이용한 유전체 형상 및 위상 최적설계)

  • Jeung, Gi-Woo;Choi, Nak-Sun;Kim, Nam-Kyung;Kim, Dong-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1936-1941
    • /
    • 2009
  • This paper deals with a new methodology for topology optimization in which the topology of the design domain may change during the shape optimization process. To achieve this, the concept of the topological gradient is introduced to compute the sensitivity of an objective function when a small hole is drilled in the domain. Based on shape and topological sensitivity values, the shape and topology of the design domain may be simultaneously changed during design iterations if necessary. To verify the advantages and also to facilitate understanding of the method itself, two electrostatic design problems have been tested by using 2D finite element analysis: the first is the inverse problem of a simple dielectric model and the second is the rotor design of a MEMS actuator.

Robust Current Control for Permanent Magnet Synchronous Motors by the Inverse LQ Method - An Evaluation of Control Performance Using Servo-Locks at Low Speed -

  • Takami Hiroshi
    • Journal of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.228-236
    • /
    • 2004
  • This paper describes the optimal current-control of a permanent magnet synchronous motor by the use of robust and simple current controllers, based upon the analytical procedure known as the inverse LQ (ILQ) design method. The ILQ design method is a strategy for finding the optimal gains based on pole assignment without solving the Riccati equation. It is very important to keep the motor in robust servo-lock. By experiments and simulations, we will show that the ILQ optimal servo-system with servo-lock is more insensitive at low speeds to variations in armature inductance than the standard PI servo-system. Variations in armature inductance have the greatest influence on the responses of a servo-system.