• Title/Summary/Keyword: Inverse Optimal Problem

Search Result 78, Processing Time 0.028 seconds

THE SOLVABILITY CONDITIONS FOR A CLASS OF CONSTRAINED INVERSE EIGENVALUE PROBLEM OF ANTISYMMETRIC MATRICES

  • PAN XIAO-PING;HU XI-YAN;ZHANG LEI
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.1
    • /
    • pp.87-98
    • /
    • 2006
  • In this paper, a class of constrained inverse eigenvalue problem for antisymmetric matrices and their optimal approximation problem are considered. Some sufficient and necessary conditions of the solvability for the inverse eigenvalue problem are given. A general representation of the solution is presented for a solvable case. Furthermore, an expression of the solution for the optimal approximation problem is given.

Optimal control approach to resolve the redundancy of robot manipulators

  • Kim, Sung-Woo;Leen, Ju-Jang;Sugisaka, Masanori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.234-239
    • /
    • 1993
  • Most of the control problem is for the redundant manipulators use the pseudo-inverse control, thit is, the redundancy is resolved by the pseudo-inverse of the Jacobian matrix and then the controller is designed based on this resolution. However, this pseudo-inverse control has some problems when the redundant robot repeats the cyclic tasks. This is because the pseudo-inverse resolution is a local solution that generates the different configurations of the robot arm for the same hand position. Therefore it is necessary to find the global solution that maintains the optimal configuration of the robot for the repetitive tasks. In this paper, we want to propose a redundancy resolution method by the optimal theory that uses the calculus of variation. The problem formulations are : first to convert the optimal resolution problem to an optimal control problem and then to resolve the redundancy using the necessary conditions of optimal control.

  • PDF

INVERSE PROBLEM FOR STOCHASTIC DIFFERENTIAL EQUATIONS ON HILBERT SPACES DRIVEN BY LEVY PROCESSES

  • N. U., Ahmed
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.4
    • /
    • pp.813-837
    • /
    • 2022
  • In this paper we consider inverse problem for a general class of nonlinear stochastic differential equations on Hilbert spaces whose generating operators (drift, diffusion and jump kernels) are unknown. We introduce a class of function spaces and put a suitable topology on such spaces and prove existence of optimal generating operators from these spaces. We present also necessary conditions of optimality including an algorithm and its convergence whereby one can construct the optimal generators (drift, diffusion and jump kernel).

The Characteristics of Open-loop Trajectory and Time-to-go Estimation for Impact Angle Control Optimal Guidance through Inverse Optimal Problem (역최적 문제를 통한 충돌각 제어 최적유도법칙의 개루프 비행궤적 특성 및 Time-to-go 예측)

  • Lee, Yong-In;Lee, Jin-Ik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.5-12
    • /
    • 2008
  • This paper presents the features of an impact angle constrained open-loop optimal trajectory which is given by a function of initial conditions and optimal guidance gains. Using missile motion described by linearized kinematic equations and a proper form of performance index, an inverse optimal problem is suggested to investigate the gains related to the performance index. The flight trajectory and time-to-go can be shaped in terms of the optimal guidance gains. The results are evaluated by 3-DOF simulation.

INVERSE CONSTRAINED MINIMUM SPANNING TREE PROBLEM UNDER HAMMING DISTANCE

  • Jiao, Li;Tang, Heng-Young
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.283-293
    • /
    • 2010
  • In this paper, inverse constrained minimum spanning tree problem under Hamming distance. Such an inverse problem is to modify the weights with bound constrains so that a given feasible solution becomes an optimal solution, and the deviation of the weights, measured by the weighted Hamming distance, is minimum. We present a strongly polynomial time algorithm to solve the inverse constrained minimum spanning tree problem under Hamming distance.

Optimal shape design of a polymer extrusion die by inverse formulation

  • Na, Su-Yeon;Lee, Tai-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.315-318
    • /
    • 1995
  • The optimum design problem of a coat-hanger die is solved by the inverse formulation. The flow in the die is analyzed using three-dimensional model. The new model for the manifold geometry is developed for the inverse formulation. The inverse problem for the optimum die geometry is formed as the optimization problem whose objective function is the linear combination of the square sum of pressure gradient deviation at die exit and the penalty function relating to the measure of non-smoothness of solution. From the several iterative solutions of the optimization problem, the optimum solution can be obtained automatically while producing the uniform flow rate distribution at die exit.

  • PDF

Inverse Optimal Problem for Homing Guidance with Angular Constraint (충돌각 제어 호밍유도법칙의 역최적 문제)

  • Lee, Jin-Ik;Lee, Yong-In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.5
    • /
    • pp.412-418
    • /
    • 2007
  • An inverse optimal problem for homing guidance with angular constraint is addressed. The gains of BPN(Biased PN) are investigated by duality analysis related to the weighting matrices of the performance index in the LQ control problem. Moreover, the criteria for the existence of optimal gains are derived from the generalized Riccati equation. Based on the conditions we achieve the gain set of BPN to be optimal solution to the LQ problem with terminal constraints. To validate and demonstrate the proposed approach 3-DOF simulations are carried out.

Inverse Bin-Packing Number Problems: Polynomially Solvable Cases

  • Chung, Yerim
    • Management Science and Financial Engineering
    • /
    • v.19 no.1
    • /
    • pp.25-28
    • /
    • 2013
  • Consider the inverse bin-packing number problem. Given a set of items and a prescribed number K of bins, the inverse bin-packing number problem, IBPN for short, is concerned with determining the minimum perturbation to the item-size vector so that all the items can be packed into K bins or less. It is known that this problem is NP-hard (Chung, 2012). In this paper, we investigate some special cases of IBPN that can be solved in polynomial time. We propose an optimal algorithm for solving the IBPN instances with two distinct item sizes and the instances with large items.

Partial Inverse Traveling Salesman Problems on the Line

  • Chung, Yerim;Park, Myoung-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.11
    • /
    • pp.119-126
    • /
    • 2019
  • The partial inverse optimization problem is an interesting variant of the inverse optimization problem in which the given instance of an optimization problem need to be modified so that a prescribed partial solution can constitute a part of an optimal solution in the modified instance. In this paper, we consider the traveling salesman problem defined on the line (TSP on the line) which has many applications such as item delivery systems, the collection of objects from storage shelves, and so on. It is worth studying the partial inverse TSP on the line, defined as follows. We are given n requests on the line, and a sequence of k requests that need to be served consecutively. Each request has a specific position on the real line and should be served by the server traveling on the line. The task is to modify as little as possible the position vector associated with n requests so that the prescribed sequence can constitute a part of the optimal solution (minimum Hamiltonian cycle) of TSP on the line. In this paper, we show that the partial inverse TSP on the line and its variant can be solved in polynomial time when the sever is equiped with a specific internal algorithm Forward Trip or with a general optimal algorithm.

The Analysis of Noise using of Inverse Problem in Acoustic Field (역문제를 이용한 음향장내의 소음해석)

  • 박성완
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.3
    • /
    • pp.66-75
    • /
    • 1999
  • This paper is concerned with a analysis of noise by inverse problem available for analyzing the two and three-dimensional acoustic field problems. The noise of analysis considered in this study can be reduced to an optimum problem to find the optimal set of parameters defining the vibrating state of noise source surfaces. The optimal set of parameters are searched by the standard optimization procedure minimizing the square sum of the residuals between the measured and computed quantities of sound pressure at some points in the acoustic field. Computation is carried out for typical examples in which the noise sources are located on the infinite plane. It is demonstrated that the noise of analysis can be effectively made by using the sensitive reference data.

  • PDF