• Title/Summary/Keyword: Invariant Direction

Search Result 67, Processing Time 0.044 seconds

Direction Assignment of Left Eigenvector in Linear MIMO System (선형 다변수 입출력 시스템에서 좌 고유벡터의 방향 지정)

  • Kim, Sung-Hyun;Yang, Hyun-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.3
    • /
    • pp.226-231
    • /
    • 2008
  • In this paper, we propose novel eigenstructure assignment method in full-state feedback for linear time-invariant MIMO system such that directions of some left eigenvectors are exactly assigned to the desired directions. It is required to consider the direction of left eigenvector in designing eigenstructure of closed-loop system, because the direction of left eigenvector has influence over excitation by associated input variables in time-domain response. Exact direction of a left eigenvector can be achieved by assigning proper right eigenvector set satisfying the conditions of the presented theorem based on Moore's theorem and the orthogonality of left and right eigenvector. The right eigenvector should reside in the subspace given by the desired eigenvalue, which restrict a number of designable left eigenvector. For the two cases in which desired eigenvalues are all real and contain complex number, design freedom of designable left eigenvector are given.

PROJECTION PROCESSES OF H-SSSIS RANDOM FIELDS

  • Kim, Joo-Mok
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.9 no.1
    • /
    • pp.115-121
    • /
    • 1996
  • Let $\{X(t);\;t{\in}R^n\}$ be a measurable, separable and H-sssis random fields. Here, we suppose that the increments are invariant under all Euclidean rigid body motions. We investigate some properties of H-sssis random fields and monotonicity of projection process $\{X_e(t);\;t{\in}R^1\}$ in any direction $e{\in}R^n$.

  • PDF

Effects of Fracture Tensor Component and First Invariant on Block Hydraulic Characteristics of the 2-D Discrete Fracture Network Systems (절리텐서의 성분 및 일차불변량이 2-D DFN 시스템의 블록수리전도 특성에 미치는 영향)

  • Um, Jeong-Gi
    • Economic and Environmental Geology
    • /
    • v.52 no.1
    • /
    • pp.81-90
    • /
    • 2019
  • In this study, the effects of fracture tensor component and first invariant on block hydraulic behaviors are evaluated in the 2-D DFN(discrete fracture network) systems. A series of regression analysis is performed between connected fracture tensor components and block hydraulic conductivities estimated at every $30^{\circ}$ hydraulic gradient directions for a total of 36 DFN systems having various joint density and size distribution. The directional block hydraulic conductivity seems to have strong relation with the fracture tensor component estimated in direction perpendicular to it. It is found that an equivalent continuum approach could be acceptable for the 2-D DFN systems under condition that the first invariant of fracture tensor is more than 2.0~2.5. The first invariant of fracture tensor seems highly correlated with average block hydraulic conductivity and can be used to evaluate hydraulic characteristics of the 2-D DFN systems. Also, a possibility of upscaling using the first invariant of fracture tensor for the DFN system is addressed through this study.

Development of an Automatic Label Attaching System Using a Robot Vision in Variable Situation

  • Lee, Young-Jung
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.225-230
    • /
    • 2004
  • A cold & hot rolling coil production line of iron nill consists of a kind of coherent automatic process, but an automatic labelling process still had technical difficulties in the automation of its process. The reason for difficulties in building an automatic process is that quantitative data for each rolled coil from every shipping is not easy to receive from the previous process. it is not possible to apply for a general and simple purpose robot that is actually worked through a taught position to the process because the size and direction of the coi1 has differed on every shipping. From these reasons. we introduce a robot vision system to accept an expected variable situation and to ensure the stability and flexibility of the process. This paper examines a study applied for similar cases and finds the position and direction of relied coil using the moment invariant algorithm proposed by Hu. In addition. the camera calibration and position error compensation algorithm is applied by the analysis of the relationship of transition in a space coordinate system. The construction of a robot vision system proposed by this paper is a more intellectual system than that of the automatic labelling system. which is already used to the Daihen steel nill of NEW JAPAN steel mill co. Ltd in Japan, and shows a better independent operation in the field of production.

  • PDF

A Study on the Automatic Inspection System using Invariant Moments Algorithm with the Change of Size and Rotation

  • Lee, Yong-Jung;Lee, Yang-Beom;Jeong, Gi-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.479-485
    • /
    • 2004
  • The purpose of this study is to develop a practical image inspection system that could recognize it correctly, endowing flexibility to the productive field, although the same object for work will be changed in the size and rotated. In this experiment, it selected a fighter, rotating the direction from $30^{\circ}\;to\;45^{\circ}$ simultaneously while changing the size from 1/4 to 1/16, as an object inspection without using another hardware for exclusive image processing. The invariant moments, Hu has suggested, was used as feature vector moment descriptor. As a result of the experiment the image inspection system developed from this research was operated in real-time regardless of the chance of size and rotation for the object inspection, and it maintained the correspondent rates steadily above from 94% to 96%. Accordingly, it is considered as the flexibility can be considerably endowed to the factory automation when the image inspection system developed from this research is applied to the productive field.

  • PDF

A New Approach on the Scattering of Electromagnetic Radiation for Spherical Raindrop by the Invariant Imbedding Method

  • 이경동;이동훈;김기홍
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.35-35
    • /
    • 2003
  • In satellite communication, attenuation, scattering, and depolarization of relatively high frequency waves such as millimeter waves are strongly influenced by rain. In order to study the rain attenuation, we introduce a new theoretical method, which enables us to obtain the reflection and transmission coefficients in arbitrary medium. We adopt this method to examine how the electromagnetic radiation is affected by homogeneous spherical raindrops. It is assumed that the raindrop shape is spherical and linearly locate in one direction. For the radiation of wave in raindrops, we consider the effective permittivity, in which the raindrop is assumed to be spherical. By adopting the invariant imbedding approach, the 1st order differential equations are derived for the reflection and transmission coefficients. We investigate the transmission and reflection of waves for various incident angles when the spherical raindrops are assumed to have random sizes.

  • PDF

A Study on the Automatic Inspection System using Invariant Moments Algorithm with the Change of Size and Rotation

  • 이용중
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.164-169
    • /
    • 2003
  • The purpose of this study is to develop a practical image inspect ion system that could recognize it correctly, endowing flexibility to the productive field, although the same object for work will be changed in the size and rotated. In this experiment, it selected a fighter, rotating the direction from 30$^{\circ}$ to 45 simultaneously while changing the size from 1/4 to 1/16, as an object inspection without using another hardware for exclusive image processing. The invariant moments, Hu has suggested, was used as feature vector moment descriptor. As a result of the experiment, the image inspect ion system developed from this research was operated in real-time regardless of the chance of size and rotation for the object inspection, and it maintained the correspondent rates steadily above from 94% to 96%. Accordingly, it is considered as the flexibility can be considerably endowed to the factory automat ion when the image inspect ion system developed from this research is applied to the product ive field.

  • PDF

Vision-Based Finger Action Recognition by Angle Detection and Contour Analysis

  • Lee, Dae-Ho;Lee, Seung-Gwan
    • ETRI Journal
    • /
    • v.33 no.3
    • /
    • pp.415-422
    • /
    • 2011
  • In this paper, we present a novel vision-based method of recognizing finger actions for use in electronic appliance interfaces. Human skin is first detected by color and consecutive motion information. Then, fingertips are detected by a novel scale-invariant angle detection based on a variable k-cosine. Fingertip tracking is implemented by detected region-based tracking. By analyzing the contour of the tracked fingertip, fingertip parameters, such as position, thickness, and direction, are calculated. Finger actions, such as moving, clicking, and pointing, are recognized by analyzing these fingertip parameters. Experimental results show that the proposed angle detection can correctly detect fingertips, and that the recognized actions can be used for the interface with electronic appliances.

SEMI-INVARINAT SUBMANIFOLDS OF CODIMENSION 3 SATISFYING ${\nabla}_{{\phi}{\nabla}_{\xi}{\xi}}R_{\xi}=0$ IN A COMPLEX SPACE FORM

  • Ki, U-Hang
    • East Asian mathematical journal
    • /
    • v.37 no.1
    • /
    • pp.41-77
    • /
    • 2021
  • Let M be a semi-invariant submanifold of codimension 3 with almost contact metric structure (��, ξ, η, g) in a complex space form Mn+1(c), c ≠ 0. We denote by Rξ = R(·, ξ)ξ and A(i) be Jacobi operator with respect to the structure vector field ξ and be the second fundamental form in the direction of the unit normal C(i), respectively. Suppose that the third fundamental form t satisfies dt(X, Y ) = 2��g(��X, Y ) for certain scalar ��(≠ 2c)and any vector fields X and Y and at the same time Rξ is ��∇ξξ-parallel, then M is a Hopf hypersurface in Mn(c) provided that it satisfies RξA(1) = A(1)Rξ, RξA(2) = A(2)Rξ and ${\bar{r}}-2(n-1)c{\leq}0$, where ${\bar{r}}$ denotes the scalar curvature of M.

Submanifolds of Codimension 3 in a Complex Space Form with Commuting Structure Jacobi Operator

  • Ki, U-Hang;Song, Hyunjung
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.1
    • /
    • pp.133-166
    • /
    • 2022
  • Let M be a semi-invariant submanifold with almost contact metric structure (𝜙, 𝜉, 𝜂, g) of codimension 3 in a complex space form Mn+1(c) for c ≠ 0. We denote by S and R𝜉 be the Ricci tensor of M and the structure Jacobi operator in the direction of the structure vector 𝜉, respectively. Suppose that the third fundamental form t satisfies dt(X, Y) = 2𝜃g(𝜙X, Y) for a certain scalar 𝜃 ≠ 2c and any vector fields X and Y on M. In this paper, we prove that if it satisfies R𝜉𝜙 = 𝜙R𝜉 and at the same time S𝜉 = g(S𝜉, 𝜉)𝜉, then M is a real hypersurface in Mn(c) (⊂ Mn+1(c)) provided that $\bar{r}-2(n-1)c{\leq}0$, where $\bar{r}$ denotes the scalar curvature of M.