인터넷이 빠르게 성장함에 따라 네트워크 공격기법이 변화되고 새로운 공격 형태가 나타나고 있다. 네트워크상에서 알려진 침입의 탐지는 효율적으로 수행되고 있으나 알려지지 않은 침입에 대해서는 오탐지(false negative)나 과탐지(false positive)가 너무 높게 나타난다. 또한, 네트워크상에서 지속적으로 처리되는 대량의 패킷에 대하여 실시간적인 탐지와 새로운 침입 유형에 대한 대응방법과 인지능력에 한계가 있다. 따라서 다양한 대량의 트래픽에 대해서 탐지율을 높이고 과탐지를 감소할 수 있는 방법이 필요하다. 본 논문에서는 네트워크 기반의 이상 침입 탐지 시스템에서 과탐지를 감소하고, 침입 탐지 능력을 향상시키기 위하여 다차원 연관 규칙 마이닝과 수정된 부정 선택 알고리즘(Negative Selection Algorithm)을 결합한 다중 레벨 이상 침입 탐지 기술을 제안한다. 제안한 알고리즘의 성능 평가를 위하여 기존의 이상 탐지 알고리즘과 제안된 알고리즘을 수행하여, 각각의 과탐지율을 평가, 제시하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권7호
/
pp.3076-3092
/
2020
An IKPCA-ELM-based intrusion detection method is developed to address the problem of the low accuracy and slow speed of intrusion detection caused by redundancies and high dimensions of data in the network. First, in order to reduce the effects of uneven sample distribution and sample attribute differences on the extraction of KPCA features, the sample attribute mean and mean square error are introduced into the Gaussian radial basis function and polynomial kernel function respectively, and the two improved kernel functions are combined to construct a hybrid kernel function. Second, an improved particle swarm optimization (IPSO) algorithm is proposed to determine the optimal hybrid kernel function for improved kernel principal component analysis (IKPCA). Finally, IKPCA is conducted to complete feature extraction, and an extreme learning machine (ELM) is applied to classify common attack type detection. The experimental results demonstrate the effectiveness of the constructed hybrid kernel function. Compared with other intrusion detection methods, IKPCA-ELM not only ensures high accuracy rates, but also reduces the detection time and false alarm rate, especially reducing the false alarm rate of small sample attacks.
침입 탐지 시스템(IDS: Intrusion Detection System)은 보안을 침해하는 이상 행위를 탐지하는 기술로서 비정상적인 조작을 탐지하고 시스템 공격을 방지한다. 기존의 침입탐지 시스템은 트래픽 패턴을 통계 기반으로 분석하여 설계하였다. 그러나 급속도로 성장하는 기술에 의해 현대의 시스템은 다양한 트래픽을 생성하기 때문에 기존의 방법은 한계점이 명확해졌다. 이런 한계점을 극복하기 위해 다양한 기계학습 기법을 적용한 침입탐지 방법의 연구가 활발히 진행되고 있다. 본 논문에서는 다양한 네트워크 환경의 트래픽을 시뮬레이션 장비에서 생성한 NGIDS-DS(Next Generation IDS Dataset)를 이용하여 이상(Anomaly) 탐지 정확도를 높일 수 있는 데이터 전처리 기법에 관한 비교 연구를 진행하였다. 데이터 전처리로 패딩(Padding)과 슬라이딩 윈도우(Sliding Window)를 사용하였고, 정상 데이터 비율과 이상 데이터 비율의 불균형 문제를 해결하기 위해 AAE(Adversarial Auto-Encoder)를 적용한 오버샘플링 기법 등을 적용하였다. 또한, 전처리된 시퀀스 데이터의 특징벡터를 추출할 수 있는 Word2Vec 기법 중 Skip-gram을 이용하여 탐지 정확도의 성능 향상을 확인하였다. 비교실험을 위한 모델로는 PCA-SVM과 GRU를 사용하였고, 실험 결과는 슬라이딩 윈도우, Skip-gram, AAE, GRU를 적용하였을 때, 더 좋은 성능을 보였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제18권2호
/
pp.494-510
/
2024
Internet users are exposed to sophisticated cyberattacks that intrusion detection systems have difficulty detecting. Therefore, research is increasing on intrusion detection methods that use artificial intelligence technology for detecting novel cyberattacks. Unsupervised learning-based methods are being researched that learn only from normal data and detect abnormal behaviors by finding patterns. This study developed an anomaly-detection method based on unsupervised machines and deep learning for a network intrusion detection system (NIDS). We present a hybrid anomaly detection approach based on unsupervised learning techniques using the autoencoder (AE), Isolation Forest (IF), and Local Outlier Factor (LOF) algorithms. An oversampling approach that increased the detection rate was also examined. A hybrid approach that combined deep learning algorithms and traditional machine learning algorithms was highly effective in setting the thresholds for anomalies without subjective human judgment. It achieved precision and recall rates respectively of 88.2% and 92.8% when combining two AEs, IF, and LOF while using an oversampling approach to learn more unknown normal data improved the detection accuracy. This approach achieved precision and recall rates respectively of 88.2% and 94.6%, further improving the detection accuracy compared with the hybrid method. Therefore, in NIDS the proposed approach provides high reliability for detecting cyberattacks.
최근 침입 탐지 시스템은 공격의 수가 극적으로 증가하고 있기 때문에 컴퓨터 네트워크 시스템에서 아주 중요한 기술이다. 어려운 침입에 대한 감시데이터를 분석하기 때문에 침입 탐지 방법의 대부분은 실시간적으로 침입을 탐지하지 않는다. 네트워크 침입 탐지 시스템은 개별 사용자, 그룹, 원격 호스트와 전체 시스템의 활동을 모니터링하고 그들이 발생할 때, 내부와 외부 모두에서 의심 보안 위반을 탐지하는 데 사용한다. 그것은 시간이 지남에 따라 사용자의 행동 패턴을 학습하고 이러한 패턴에서 벗어나는 행동을 감지한다. 본 논문에서 알려진 시스템의 취약점 및 침입 시나리오에 대한 정보를 인코딩하는 데 사용할 수 있는 규칙 기반 구성 요소를 사용한다. 두 가지 방법을 통합하는 것은 침입 탐지 시스템 권한이 있는 사용자 또는 센서 침입 탐지 시스템 (IDS)에서 데이터를 수집 RFM 분석 방법론 및 모니터링을 사용하여 비정상적인 사용자 (권한이 없는 사용자)에 의해 침입뿐만 아니라 오용을 탐지하기위한 포괄적인 시스템을 만든다.
최근 인터넷 사용의 증가에 따라 네트워크에 연결된 시스템에 대한 악의적인 해킹과 침입이 빈번하게 발생하고 있으며, 각종 시스템을 운영하는 정부기관, 관공서, 기업 등에서는 이러한 해킹 및 침입에 의해 치명적인 타격을 입을 수 있는 상황에 놓여 있다. 이에 따라 인가되지 않았거나 비정상적인 활동들을 탐지, 식별하여 적절하게 대응하는 침입탐지 시스템에 대한 관심과 수요가 높아지고 있으며, 침입탐지 시스템의 예측성능을 개선하려는 연구 또한 활발하게 이루어지고 있다. 본 연구 역시 침입탐지 시스템의 예측성능을 개선하기 위한 새로운 지능형 침입탐지모형을 제안한다. 본 연구의 제안모형은 비교적 높은 예측력을 나타내면서 동시에 일반화 능력이 우수한 것으로 알려진 Support Vector Machine(SVM)을 기반으로, 비대칭 오류비용을 고려한 분류기준값 최적화를 함께 반영하여 침입을 효과적으로 차단할 수 있도록 설계되었다. 제안모형의 우수성을 확인하기 위해, 기존 기법인 로지스틱 회귀분석, 의사결정나무, 인공신경망과의 결과를 비교하였으며 그 결과 제안하는 SVM 모형이 다른 기법에 비해 상대적으로 우수한 성과를 보임을 확인할 수 있었다.
As the networking and data communication technology is making progress, there has been an augmented concern about the security. Intrusion Detection and Prevention Systems have long being providing a reliable layer in the field of Network Security. Intrusion Detection System works on analyzing the traffic and finding a known intrusion or attack pattern in that traffic. But as the new technology provides betterment for the world of the Internet; it also provides new and efficient ways for hacker to intrude in the system. Hence, these patterns on which IDS & IPS work need to be updated. For detecting the power and knowledge of attackers we sometimes make use of Honey-pots. In this paper, we propose a Honey-pot architecture that automatically updates the Intrusion's Signature Knowledge Base of the IDS in a Network.
침입 탐지 시스템에 대하여 많은 연구 노력들이 진행되고 있다. 그러나 침입 탐지 시스템의 모델과 성능 평가에 대한 작업은 거의 찾아 볼 수 없다. 본 논문에서는 지역적인 침입 탐지를 위한 에이전트들과 전역적인 침입 탐지를 위한 집중 데이터 분석 컴포넌트를 가지고 있는 다중 도메인 환경에서 혼합 침입 탐지를 위한 통신 프레임워크를 제안한다. 또한 전체적인 프레임워크에서 호스트 기반과 네트워크 기반 침입 탐지 시스템의 결합을 가정한다. 지역 도메인에서 경보와 로그 데이터 같은 정보 집합은 상위 레벨로 보고 된다. 계위의 루트에는 데이터 합동을 수행하는 전역 매니저가 있다. 전역 매니저는 침입 탐지 경보의 집합과 상호관련의 결과로 보안 정책을 하위 레벨로 전달하게 된다. 본 논문에서는 혼합 침입 탐지 시스템을 위한 통심 메커니즘을 모델링하고 데이터 및 정책 전달을 위한 전송 능력의 성능 평가를 위하여 OPNET 모델러를 이용한 시뮬레이터를 개발한다. 여러 가지 시나리오에 기반하여 통신 지연에 초점을 두고 모의실험 결과를 제시하고 비교한다.
$\textbullet$ Intrusion Detection Algorithm based on Artificial Immune System 1. Introduction 2. Research Background 3. The adaptation algorithm of SYN flooding attack 4. SIMULATION 5. Conclusion 6. References
네트워크 및 인터넷시장의 발전과 더불어 침해사고도 급증하고 있으며 그 방법도 다양해지고 있다. 이를 방어하기 위해 여러 가지 보안시스템이 개발되어 왔으나 관리자가 수동적으로 침입을 차단하는 형식을 띄고있다. 본 논문에서는 침입탐지 시스템의 패킷 분석능력과 공격에 대한 실시간 대응성을 높이기 위하여 리눅스 OS에서 방화벽기능을 담당하는 넷필터를 이용해 침입탐지 및 차단시스템을 설계하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.