• Title/Summary/Keyword: Intrinsic defect

검색결과 58건 처리시간 0.036초

Simple and Clean Transfer Method for Intrinsic Property of Graphene

  • 최순형;이재현;장야무진;김병성;최윤정;황종승;황성우;황동목
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.659-659
    • /
    • 2013
  • Recently, graphene has been intensively studied due to the fascinating physical, chemical and electrical properties. It shows high carrier mobility, high current density, and high thermal conductivity compare with conventional semiconductor materials even it has single atomic thickness. Especially, since graphene has fantastic electrical properties many researchers are believed that graphene will be replacing Si based technology. In order to realize it, we need to prepare the large and uniform graphene. Chemical vapor deposition (CVD) method is the most promising technique for synthesizing large and uniform graphene. Unfortunately, CVD method requires transfer process from metal catalyst. In transfer process, supporting polymer film (Such as poly (methyl methacrylate)) is widely used for protecting graphene. After transfer process, polymer layer is removed by organic solvents. However, it is impossible to remove it completely. These organic residues on graphene surface induce quality degradation of graphene since it disturbs movement of electrons. Thus, in order to get an intrinsic property of graphene completely remove of the organic residues is the most important. Here, we introduce modified wet graphene transfer method without PMMA. First of all, we grow the graphene from Cu foil using CVD method. And then, we deposited several metal films on graphene for transfer layer instead of PMMA. Finally, we fabricate graphene FET devices. Our approaches show low defect density and non-organic residues in comparison with PMMA coated graphene through Raman spectroscopy, SEM and AFM. In addition, clean graphene FET shows intrinsic electrical characteristic and high carrier mobility.

  • PDF

MeV Si 자기 이온주입된 단결정 Silicon내의 결함 거동 (Defect Formatìon and Annealìng Behavìor in MeV Si Self-Implanted Silicon)

  • 조남훈;장기완;서경수;이정용;노재상
    • 한국재료학회지
    • /
    • 제6권7호
    • /
    • pp.733-741
    • /
    • 1996
  • 본 연구에서는 MeV Si 자기 이온주업을 실시하여 주업원자와 모재 원자와의 화학적 영향이 배제된 결함 형성 거동을 관찰하였다. 자기 이온주업을 위하여 Tandem Accelerator가 사용되었고 1~3 MeV의 에너지 범위의 이온주입이 실시되었다. MeV 이온주입된 시편의 격자결함은 표면으로부터 고립된 $R_p$ 근처에 집중된 것이 관찰되었다. 주입에너지 변화에 따른 격자결함 생성 거동을 관찰하기 위하여 조사량을 $1{\times}10^{15}/cm^2$으로 고정하고 주입에너지를 1~3 MeV로 증가하였다. RBS 분석 결과 격자결함의 형성층 깊이는 에너지 증가에 따라 증가하였고 표면층에는 에너지 증가시 더욱 좋은 결정성을 유지하였다. 또한 주입에너지가 일정한 경우 조사량 증가시 $R_p$ 부근에 집중된 결함층의 농도는 증가하였으나 표면부근의 결함농도는 임계조사량 이상에서 포화되는 것이 관찰되었다. XTEM 분석 결과는 RBS의 결과와 잘 일치하였다. XTEM 관찰 결과 이온주업 상태의 결함층은 dark band의 형태로 관찰되었고 열처리시 이차결함은 이곳으로부터 생성되었다. 2MeV $Si^+$ 자기 이온주입시 이차결함이 형성되는 임계조사량은 $3{\times}10^{14}{\sim}5{\times}10^{14}/cm^2$ 사이로 관찰되었다. 열처리시 dark band의 하단부의 위치는 변화하지 않고 상단부만이 제거되었다. 실험을 통하여 얻은 결과들은 Monte-Carlo technique을 이용한 TRIM-code를 사용하여 해석하였다. SIMS 분석을 통하여 이차결함은 모재내에 존재하는 oxygen 불순물을 gettering함을 관찰하였다.

  • PDF

박막 실리콘 태양전지의 광열화현상 연구: 비정질 실리콘 태양전지 및 나노양자점 실리콘 박막 태양전지 (Study of Light-induced Degradation in Thin Film Silicon Solar Cells: Hydrogenated Amorphous Silicon Solar Cell and Nano-quantum Dot Silicon Thin Film Solar Cell)

  • 김가현
    • 한국태양에너지학회 논문집
    • /
    • 제39권1호
    • /
    • pp.1-9
    • /
    • 2019
  • Light induced degradation is one of the major research challenges of hydrogenated amorphous silicon related thin film silicon solar cells. Amorphous silicon shows creation of metastable defect states, originating from elevated concentration of dangling bonds during light exposure. The metastable defect states work as recombination centers, and mostly affects quality of intrinsic layer in solar cells. In this paper we present results of light induced degradation in thin film silicon solar cells and discussion on physical origin, mechanism and practical solutions of light induced degradation in thin film silicon solar cells. In-situ light-soaking IV measurement techniques are presented. We also present thin film silicon material with silicon nano-quantum dots embedded within amorphous matrix, which shows superior stability during light-soaking. Our results suggest that solar cell using silicon nano-quantum dots in abosrber layer shows superior stability under light soaking, compared to the conventional amorphous silicon solar cell.

The biomechanical and biological effect of supercooling on cortical bone allograft

  • MuYoung Kim ;Hun-Young Yoon
    • Journal of Veterinary Science
    • /
    • 제24권6호
    • /
    • pp.79.1-79.16
    • /
    • 2023
  • Background: The need for a storage method capable of preserving the intrinsic properties of bones without using toxic substances has always been raised. Supercooling is a relatively recently introduced preservation method that meets this need. Supercooling refers to the phenomenon of liquid in which the temperature drops below its freezing point without solidifying or crystallizing. Objectives: The purpose of this study was to identify the preservation efficiency and applicability of the supercooling technique as a cortical bone allograft storage modality. Methods: The biomechanical effects of various storage methods, including deep freezing, cryopreservation, lyophilization, glycerol preservation, and supercooling, were evaluated with the three-point banding test, axial compression test, and electron microscopy. Additionally, cortical bone allografts were applied to the radial bone defect in New Zealand White rabbits to determine the biological effects. The degree of bone union was assessed with postoperative clinical signs, radiography, micro-computed tomography, and biomechanical analysis. Results: The biomechanical properties of cortical bone grafts preserved using glycerol and supercooling method were found to be comparable to those of normal bone while also significantly stronger than deep-frozen, cryopreserved, and lyophilized bone grafts. Preclinical research performed in rabbit radial defect models revealed that supercooled and glycerol-preserved bone allografts exhibited significantly better bone union than other groups. Conclusions: Considering the biomechanical and biological superiority, the supercooling technique could be one of the optimal preservation methods for cortical bone allografts. This study will form the basis for a novel application of supercooling as a bone material preservation technique.

Frit 첨가량에 따른 PDP용 형광체의 특성 연구 (Characteristics of Phosphors for PDP with Frit Contents)

  • 정아름;김형준;최성철
    • 한국세라믹학회지
    • /
    • 제47권2호
    • /
    • pp.146-150
    • /
    • 2010
  • Because the plasma display panel has used red, green and blue(RGB) phosphors, it has suffer from two intrinsic problems; 1) the cell defect due to the lack of binding force between phosphor particles and 2) mis-discharge because of difference of electrical characteristics among RGB phosphors. In order to control the mechanical and electrical properties of RGB phosphors, frit with $ZnOB_2O_3-SiO_2-Al_2O_3$ system was added to RGB phosphor as sintering additive. The mechanical properties were increased by the amount of frit. The amount of frit under 5 wt% rarely affected dielectric constant. However, there was the limit of amount because of decreasing optical properties seriously; over 3 wt% in red, over 10 wt% in green and blue.

OLED를 위한 진공 열 증착 투명 음극 형성 기술 (Vacuum thermal evaporated transparent cathodes for organic light-emitting devices)

  • 문대규
    • 진공이야기
    • /
    • 제1권2호
    • /
    • pp.19-23
    • /
    • 2014
  • Transparent and top emission organic light-emitting device (OLEDs) are the important issues in realizing new display applications such as see-through electronic displays, and flexible displays. The cathode of the transparent and top emission OLEDs should be transparent in the visible light and should not give any damage to the underlying organic layers, in addition to its intrinsic role of injecting electrons into the organic layers. Several authors have investigated the transparent conducting oxide films prepared by sputtering methods. They have introduced the sophisticated sputtering process for reducing the damages. Other groups have developed thermally evaporated transparent cathodes which are believed to be damage free without causing any permanent defect to the organic layers. This review focuses on the vacuum evaporated damage free transparent cathodes.

Crowning 롤러를 이용한 벨트 이송 시스템의 시뮬레이션 (Simulation for Belt Transport System using Crowning Roller)

  • 유상헌;인용석;최연선;구자춘
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.676-679
    • /
    • 2006
  • The media transport in automatic office machines such as printers, ATMs, copying machines is achieved by a complicated belt system. The system generally uses a crowning roller and belt which has been well-known for its intrinsic belt centering advantage during its operation. Since the modern office machines require precise high operating speed, stabilization of media transporting system has been one of the important issues of the machine design. Even a minor defect of the belt or the roller in the transport system directly affects its operating stability. This paper delivers a simulation technique that combines a multi-body dynamics analysis routine and a FEM based flexible continuum modeling for the efficient simulation of the flexible media transport problems.

  • PDF

고농도 붕소의 도핑된 실리콘 웨이퍼에서의 산소석출에 관한 연구 (A Study on Oxygen Precipitation in Heavily Boron Doped Silicon Wafer)

  • 윤상현;곽계달
    • 한국전기전자재료학회논문지
    • /
    • 제11권9호
    • /
    • pp.705-710
    • /
    • 1998
  • Intrinsic gettering is usually to improve wafer quality, which is an important factor for reliable ULSI devices. In order to generate oxygen precipitation in lightly and heavily boron doped silicon wafers with or without high $^75 As^+$ ion implantation, the 2-step annealing method was adopted. After annealing, the were cleaved and etched with th Wright etchant. The morphology of cross section on samples was inspected by FESEM(field emission scanning electron microscopy). The morphology of unimplanted samples was rater rough than that of the implanted. Oxygen precipitation density observed by an optical microscope in lightly boron doped samples was about 3$\times10^6/cm^3$. However, in heavily boron doped samples, the density of oxygen precipitation was largest at $600^{\circ}C$ in 1st annealing, and decreased abruptly until $800^{\circ}C$, But it increased slightly at $1000^{\circ}C$ and was independent with the implantation.

  • PDF

Colloidal Photonic Crystals with Quasi-Amorphous Structure: Angle-Independent Electrically Tunable Full Color Photonic Pixels

  • 김대현;정재연;지승욱;강영종
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.278-278
    • /
    • 2010
  • Electrically tunable photonic band gap (PBG) materials based on crystalline structures have been developed for active components of display. Despite considerable advances, the intrinsic drawbacks of the crystalline PBG materials such as the strong angle dependent hue and difficulty of fabricating defect-free structures in large area have yet to be addressed for their practical applications. Here we report quasi-amorphous colloidal structures exhibiting angle-independent photonic colors in response to the electric stimuli. Moderately polydisperse colloidal Fe3O4@SiO2 nanoparticles dispersed in organic solvents exclusively form quasi-amorphous photonic materials at sufficiently high concentrations (> 30 wt%), and which reversibly reflect incident light in visible region ($\lambda$ peak = 490~655 nm) in response to the relatively low bias voltage (0~4 V). We show the angle-independent tunable photonic colors with the fast response time (50~170 ms) due to the isotropic nature of quasi-amorphous structures. Conventional vacuum injection technique is applicable for fabricating flexible full color photonic display pixels with various pre-defined shapes.

  • PDF

a-SiOx:H/c-Si 구조를 통한 향상된 밴드 오프셋과 터널링에 대한 전기적 특성 고찰 (Electrical Properties for Enhanced Band Offset and Tunneling with a-SiOx:H/a-si Structure)

  • 김홍래;팜뒤퐁;오동현;박소민;라벨로 마테우스;김영국;이준신
    • 한국전기전자재료학회논문지
    • /
    • 제34권4호
    • /
    • pp.251-255
    • /
    • 2021
  • a-Si is commonly considered as a primary candidate for the formation of passivation layer in heterojunction (HIT) solar cells. However, there are some problems when using this material such as significant losses due to recombination and parasitic absorption. To reduce these problems, a wide bandgap material is needed. A wide bandgap has a positive influence on effective transmittance, reduction of the parasitic absorption, and prevention of unnecessary epitaxial growth. In this paper, the adoption of a-SiOx:H as the intrinsic layer was discussed. To increase lifetime and conductivity, oxygen concentration control is crucial because it is correlated with the thickness, bonding defect, interface density (Dit), and band offset. A thick oxygen-rich layer causes the lifetime and the implied open-circuit voltage to drop. Furthermore the thicker the layer gets, the more free hydrogen atoms are etched in thin films, which worsens the passivation quality and the efficiency of solar cells. Previous studies revealed that the lifetime and the implied voltage decreased when the a-SiOx thickness went beyond around 9 nm. In addition to this, oxygen acted as a defect in the intrinsic layer. The Dit increased up to an oxygen rate on the order of 8%. Beyond 8%, the Dit was constant. By controlling the oxygen concentration properly and achieving a thin layer, high-efficiency HIT solar cells can be fabricated.