• Title/Summary/Keyword: Intracellular bacteria

Search Result 158, Processing Time 0.025 seconds

Resistance to Reactive Oxygen Species and Antioxidant Activities of Some Strains of Lactic Acid Bacteria from the Mustard Leaf Kimchi (갓김치에서 분리된 유산균의 활성산소종에 대한 저항성과 항산화 활성)

  • Lim, Sung-Mee
    • Korean Journal of Microbiology
    • /
    • v.46 no.4
    • /
    • pp.375-382
    • /
    • 2010
  • In present study, five strains of Lactobacillus acidophilus GK20, Lactobacillus brevis GK55, Lactobacillus paracasei GK74, Lactobacillus plantarum GK81, and Leuconostoc mesenteroides GK104 isolated from the mustard leaf kimchi were investigated for resistance to reactive oxygen species (ROS) and antioxidant activity. L. acidophilus GK20, L. brevis GK55, L. paracasei GK74, and L. plantarum GK81 were resistant to hydrogen peroxide (0.5 mM), showing a survival rate of 50% or more. In particular, L. acidophilus GK20 and L. paracasei GK74 were the most superoxide anions-resistant and L. paracasei GK74 and L. plantarum GK81 were most likely survive hydroxyl radicals. Meanwhile, the intracellular cell-free extract (ICFE) from L. plantarum GK81 exhibited significantly higher DPPH radical scavenging values ($96.4{\pm}2.8%$) than the intact cells (IC). The ICFE of L. plantarum GK81 showed the highest superoxide radical scavenging ability and chelating activity for $Fe^{2+}$ ions among the 5 lactic acid bacteria (LAB) tested, and IC and ICFE from L. plantarum GK81 demonstrated excellent reducing activity, which was higher than those of BHA and vitamin C as a positive control.

Physiological activities of Agrimonia pilosa extract (짚신나물(Agrimonia pilosa) 추출물의 생리활성)

  • Kim, Hyun-Soo
    • Food Science and Preservation
    • /
    • v.22 no.2
    • /
    • pp.261-266
    • /
    • 2015
  • In this study, we investigated the applicability of functional materials by examining various physiological activities with an extract from the Agrimonia pilosa root. The A. pilosa extract showed low cytotoxicity against murine melanoma B16F10 cells. With little or no cytotoxicity at various concentrations, the A. pilosa extract showed high levels of DPPH radical scavenging activity ($ID_{50}$, 20.70 mg/L) and anti-microbial activity against Bacillus subtilis, Escherichia coli, and Candida albicans. In particular, it had a high level of anti-microbial activities against Gram-positive bacteria. These results suggest that the A. pilosa extract can be used as a natural preservative. It also showed inhibition of tyrosinase activity ($ID_{50}$, 90.18 mg/L), as does kojic acid ($ID_{50}$, 89.13 mg/L), and especially, a higher decrease in melanin content ($ID_{50}$, 62.5 mg/L) than the arbutin level ($ID_{50}$, 100.7 mg/L) as a positive control. These findings suggest that the A. pilosa extract inhibits melanin synthesis by suppressing the intracellular tyrosinase expression. These results indicate that the A. pilosa extract may be an effective material for functional cosmetics, such as skin whitening materials.

A Comparison of Ammonia and Preformed Protein as a Source of Nitrogen for Microbial Growth in the Rumen of Sheep Given Oaten Chaff

  • Kanjanapruthipong, J.;Leng, R.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.4
    • /
    • pp.351-362
    • /
    • 1998
  • Microbial growth efficiency in the rumen was studied in sheep given hourly, 31.25 g oaten chaff with either 0.31 and 0.88 g urea or 1.88 and 5.63 g casein (exp. 1) and 33.33 g oaten chaff with 1.04 casein or 0.3, 0.6 and 0.9 g urea or the mixture of the casein and urea (exp. 2). Concentrations of ruminal fluid ammonia increased with increasing nitrogenous supplements. Organic matter digestibility in sacco in the rumen was not different irrespective of N sources. Isoacids and valeric acid increased with increasing ingested casein but decreased with increasing urea intake. Peptide and amino acid pools in ruminal fluid increased with increasing ammonia concentrations (exp. 2) suggesting that proteolytic activity and transportation of peptides and amino acids across microbial membrane of rumen microbes may be regulated by the metabolite mechanism (intracellular amino acids and $NH_4{^+}$, respectively). Densities of total viable and cellulolytic bacteria in ruminal fluid increased with increasing ammonia levels but that of small Entodinia decreased. The density of fungal sporangia growth on oat leaf blades decreased with increasing ammonia concentrations but appeared to remain constant in the presence of casein. Efficiency of net microbial cell synthesis was 15-28% higher when ammonia concentrations increased from 100 to above 200 mg N/l regardless of N sources. In conclusion, supplementation of preformed protein had no effect on rumen digestion and microbial growth efficiency. This could not be accounted for its effect on ruminal fluid ammonia. Increased microbial growth efficiency with increasing ammonia levels may be due to a reduction in the turnover of microbial cells within the rumen.

The Bactericidal Effect of High Temperature Is an Essential Resistance Mechanism of Chicken Macrophage against Brucella abortus Infection

  • Arayan, Lauren Togonon;Reyes, Alisha Wehdnesday Bernardo;Hop, Huynh Tan;Xuan, Huy Tran;Baek, Eun Jin;Min, Wongi;Kim, Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.10
    • /
    • pp.1837-1843
    • /
    • 2017
  • Knowledge of avian host responses to brucellosis is critical to understanding how birds resist this infection; however, this mechanism is not well established. On the other hand, temperature has a major involvement in the physiology of living organisms, and cell death induced by heat is attributed to protein denaturation. This study demonstrates the direct bactericidal effect of a high temperature ($41^{\circ}C$) on Brucella abortus that resulted in the gradual reduction of intracellular bacteria and inhibited bacterial growth within avian macrophage HD11 in an increasing period of time. On the other hand, this study also revealed that high temperature does not affect the rate of bacterial uptake, as confirmed by the bacterial adherence assay. No significant difference was observed in the expression of target genes between infected and uninfected cells for both temperatures. This study suggests the susceptibility of B. abortus to bacterial death under a high temperature with an increased period of incubation, leading to suppression of bacterial growth.

Characterization of PCR fragment of metallothionein gene from liver mRNS of channel catfish (챠넬메기의 간 mRNA 로부터 분리한 metallothionein 유전자의 PCR 절편의 특성)

  • Song, Young-Hwan
    • Journal of fish pathology
    • /
    • v.10 no.1
    • /
    • pp.39-44
    • /
    • 1997
  • Metallothionein is an important and essential protein to control the intracellular concentration of heavy metals, which exist in all organisms from bacteria to vertebrates. Although the detailed functions and induction mechanisms of metallothionein gene have not been clearly characterized until yet, the structure of several metallothionein genes has been revealed. Especially, piscine metallothionein is regarded as an important protein because it is induced by several heavy metal pollutants and environmental stress and it could be determined the comparative amount of heavy metals and the extent of environmental stress by assaying the RNA transcript of metallothionein gene in the method of the quantitative RT-PCR(Reverse Transcriptase Polymerase Chain Reaction). In this study I have characterized the 450 bp PCR fragment of metallothionein gene amplified by using the mixture of internal specific primers and universal 3' end primer. The nucleotide sequence analysis of 450 bp PCR fragment amplified in cDNA library of channel catfish did not show strong homology to other piscine metallothionein genes.

  • PDF

Molecular Detection of Toxoplasma Gondii in Haemaphysalis Ticks in Korea

  • Kim, Ju Yeong;Kwak, You Shine;Lee, In-Yong;Yong, Tai-Soon
    • Parasites, Hosts and Diseases
    • /
    • v.58 no.3
    • /
    • pp.327-331
    • /
    • 2020
  • Toxoplasma gondii are intracellular protozoa that can cause neurological disease or death in fetuses and even in immunocompromised human adults. Ticks are recognized as vectors of many microorganisms including viruses, bacteria, and protozoa. Recent studies detected T. gondii in various tick species in many countries. In this study, we performed PCR detection of the T. gondii B1 gene from Haemaphysalis ticks collected from vegetation in 4 localities, Wonju, Gunsan, Miryang, and Yangsan, in Korea. We analyzed DNA from 314 ticks (268 Haemaphysalis longicornis and 46 Haemaphysalis flava) and the B1 gene of T. gondii was detected in 13 of these. The detection of T. gondii in ticks differed significantly by region (P=0.021). T. gondii was detected in the following percentages of collected ticks: 3.7% (7 of 189) in Gunsan, 10% (5 of 50) in Wonju, 16.7% (1 of 6) in Yangsan, and 0% (0 of 69) in Miryang. The detection of T. gondii in ticks was not associated with tick species or development stage. This is the first report of T. gondii detection in ticks in Korea. Our results provide important information necessary to understand toxoplasmosis transmission.

Natural occurrence of Mycobacterium as an endosymbiont of Acanthamoeba isolated from a contact lens storage case

  • Yu, Hak-Sun;Jeong, Hae-Jin;Hong, Yeon-Chul;Seol, Seong-Yong;Chung, Dong-Il;Kong, Hyun-Hee
    • Parasites, Hosts and Diseases
    • /
    • v.45 no.1 s.141
    • /
    • pp.11-18
    • /
    • 2007
  • Recent in vitro studies have revealed that a certain Mycobacterium can survive and multiply within free-living amoebae. It is believed that protozoans function as host cells for the intracellular replication and evasion of Mycobacterium spp. under harmful conditions. In this study, we describe the isolation and characterization of a bacterium naturally observed within an amoeba isolate acquired from a contact lens storage case. The bacterium multi-plied within Acanthamoeba, but exerted no cytopathic effects on the amoeba during a 6-year amoebic culture. Trasnmission electron microscopy showed that the bacteria were randomly distributed within the cytoplasm of trophozoites and cysts of Acanthamoeba. On the basis of the results of 18S rRNA gene analysis, the amoeba was identified as A. lugdunensis. A 16S rRNA gene analysis placed this bacterium within the genus Mycobacterium. The bacterium evidenced positive reactivity for acid-fast and fluorescent acid-fast stains. The bacterium was capable of growth on the Middlebrook 7H11-Mycobacterium-specific agar. The identification and characterization of bacterial endosymbionts of free-living protozoa bears significant implications for our understanding of the ecology and the identification of other atypical mycobacterial pathogens.

Proteolytic Activity of Escherichia coli Oligopeptidase B Against Proline-Rich Antimicrobial Peptides

  • Mattiuzzo, Maura;Gobba, Cristian De;Runti, Giulia;Mardirossian, Mario;Bandiera, Antonella;Gennaro, Renato;Scocchi, Marco
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.2
    • /
    • pp.160-167
    • /
    • 2014
  • Oligopeptidase B (OpdB) is a serine peptidase widespread among bacteria and protozoa that has emerged as a virulence factor despite its function has not yet been precisely established. By using an OpdB-overexpressing Escherichia coli strain, we found that the overexpressed peptidase makes the bacterial cells specifically less susceptible to several proline-rich antimicrobial peptides known to penetrate into the bacterial cytosol, and that its level of activity directly correlates with the degree of resistance. We established that E. coli OpdB can efficiently hydrolyze in vitro cationic antimicrobial peptides up to 30 residues in length, even though they contained several prolines, shortening them to inactive fragments. Two consecutive basic residues are a preferred cleavage site for the peptidase. In the case of a single basic residue, there is no cleavage if proline residues are present in the $P_1$ and $P_2$ positions. These results also indicate that cytosolic peptidases may cause resistance to antimicrobial peptides that have an intracellular mechanism of action, such as the proline-rich peptides, and may contribute to define the substrate specificity of the E. coli OpdB.

Formation of Succinic Acid by Klebsiella pneumoniae MCM B-325 Under Aerobic and Anaerobic Conditions

  • Thakker Chandresh;Bhosale Suresh;Ranade Dilip
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.870-879
    • /
    • 2006
  • The present study describes the formation of succinic acid by a nonvirulent, highly osmotolerant Klebsiella pneumoniae strain SAP (succinic acid producer), its profile of metabolites, and enzymes of the succinate production pathway. The strain produced succinate along with other metabolites such as lactate, acetate, and ethanol under aerobic as well as anaerobic growth conditions. The yield of succinate was higher in the presence of $MgCO_3$ under $N_2$ atmosphere as compared with that under $CO_2$ atmosphere. Analysis of intracellular metabolites showed the presence of a smaller PEP pool than that of pyruvate. Oxaloacetate, citrate, and $\alpha$-ketoglutarate pools were considerably larger than those of isocitrate and fumarate. In order to understand the synthesis of succinate, the enzymes involved in end-product formation were studied. Levels of phosphoenolpyruvate carboxykinase, fumarate reductase, pyruvate kinase, and acetate kinase were higher under anaerobic growth conditions. Based on the profiles of the metabolites and enzymes, it was concluded that the synthesis of succinate took place via oxaloacetate, malate, and fumarate in the strain under anaerobic growth conditions. The strain SAP showed potential for the bioconversion of fumarate to succinate under $N_2$ atmosphere in the presence of $MgCO_3$. At an initial fumarate concentration of 10 g/l, 7.1 g/l fumarate was converted to 7 g/l succinate with a molar conversion efficiency of 97.3%. The conversion efficiency and succinate yield were increased in the presence of glucose. Cells grown on fumarate contained an 18-fold higher fumarate reductase activity as compared with the activity obtained when grown on glucose.

Salmonella Promotes ASC Oligomerization-dependent Caspase-1 Activation

  • Hwang, Inhwa;Park, Sangjun;Hong, Sujeong;Kim, Eun-Hee;Yu, Je-Wook
    • IMMUNE NETWORK
    • /
    • v.12 no.6
    • /
    • pp.284-290
    • /
    • 2012
  • Innate immune cells sense and respond to the cytoplasmic infection of bacterial pathogens through NLRP3, NLRC4 or AIM2 inflammasome depending on the unique molecular pattern of invading pathogens. The infection of flagellin- or type III secretion system (T3SS)-containing Gram-negative bacteria such as Salmonella enterica serovar Typhimurium (S. typhimurium) or Pseudomonas aeruginosa (P. aeruginosa) triggers NLRC4-dependent caspase-1 activation leading to the secretion of proinflammatory cytokines such as interleukin-1-beta (IL-$1{\beta}$) and IL-18. Previous studies have shown that apoptosis-associated speck-like protein containing a CARD (ASC) is also required for Salmonella-induced caspase-1 activation, but it is still unclear how ASC contributes to the activation of NLRC4 inflammasome in response to S. typhimurium infection. In this study, we demonstrate that S. typhimurium triggers the formation of ASC oligomer in a potassium depletion-independent manner as determined by in vitro crosslinking and in situ fluorescence imaging. Remarkably, inhibition of potassium efflux failed to block Salmonella-promoted caspase-1 activation and macrophage cell death. These results collectively suggest that ASC is substantially oligomerized to facilitate the activation of caspase-1 in response to S. typhimurium infection. Contrary to NLRP3 inflammasome, intracellular potassium depletion is not critical for NLRC4 inflammasome signaling by S. typhimurium.