Browse > Article

Resistance to Reactive Oxygen Species and Antioxidant Activities of Some Strains of Lactic Acid Bacteria from the Mustard Leaf Kimchi  

Lim, Sung-Mee (Department of Food Science and Technology, Tongmyong University)
Publication Information
Korean Journal of Microbiology / v.46, no.4, 2010 , pp. 375-382 More about this Journal
Abstract
In present study, five strains of Lactobacillus acidophilus GK20, Lactobacillus brevis GK55, Lactobacillus paracasei GK74, Lactobacillus plantarum GK81, and Leuconostoc mesenteroides GK104 isolated from the mustard leaf kimchi were investigated for resistance to reactive oxygen species (ROS) and antioxidant activity. L. acidophilus GK20, L. brevis GK55, L. paracasei GK74, and L. plantarum GK81 were resistant to hydrogen peroxide (0.5 mM), showing a survival rate of 50% or more. In particular, L. acidophilus GK20 and L. paracasei GK74 were the most superoxide anions-resistant and L. paracasei GK74 and L. plantarum GK81 were most likely survive hydroxyl radicals. Meanwhile, the intracellular cell-free extract (ICFE) from L. plantarum GK81 exhibited significantly higher DPPH radical scavenging values ($96.4{\pm}2.8%$) than the intact cells (IC). The ICFE of L. plantarum GK81 showed the highest superoxide radical scavenging ability and chelating activity for $Fe^{2+}$ ions among the 5 lactic acid bacteria (LAB) tested, and IC and ICFE from L. plantarum GK81 demonstrated excellent reducing activity, which was higher than those of BHA and vitamin C as a positive control.
Keywords
$Fe^{2+}$-chelating activity; Lactobacillus plantarum; radical scavenging ability; reactive oxygen species; reducing activity;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 Fu, R.Y., R.S. Bongers, I.I. Swam, J. Chen, D. Molenaar, M. Kleerebezem, J. Hugenholtz, and Y. Li. 2006. Introducing glutathione biosynthetic capability into Lactococcus lactis subsp. cremoris NZ9000 improves the oxidative-stress resistance of the host. Metab. Eng. 8, 662-671.   DOI   ScienceOn
2 Aoshima, H., H. Tsunoue, H. Koda, and Y. Kiso. 2004. Aging of whisky increased 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity. J. Agr. Food Chem. 52, 5240-5244.   DOI   ScienceOn
3 Nishino, T., H.S. Sone, H.K. Hayakawa, and F. Ishikawa. 2000. Transit of radical scavenging activity of milk products prepared by mailliard reaction and Lactobacillus casei strain Shirota fermentation through the hamster intestine. J. Dairy Sci. 83, 915-922.   DOI   ScienceOn
4 Lee, B.J., J.S. Kim, Y.M. Kang, J.H. Lim, Y.M. Kim, M.S. Lee, M.H. Jeong, C.B. Ahn, and J.Y. Je. 2010. Antioxidant activity and γ-aminobutyric acid (GABA) content in sea tangle fermented by Lactobacillus brevis BJ20 isolated from traditional fermented foods. Food Chem. 122, 271-276.   DOI   ScienceOn
5 Kim, H.S. and J.S. Ham. 2003. Antioxidative ability of lactic acid bacteria. Kor. J. Food Sci. Ani. Resour. 23, 186-192.   과학기술학회마을
6 Lee, J., K.T. Hwang, M.S. Heo, J.H. Lee, and K.Y. Park. 2005. Resistance of Lactobacillus plantarum KCTC 3099 from Kimchi to oxidative stress. J. Med. Food 8, 299-304.   DOI   ScienceOn
7 Kaizu, H., M. Sasaki, H. Nakajima, and Y. Suzuki. 1993. Effect of antioxidative lactic acid bacteria on rats fed a diet deficient in vitamin E. J. Dairy Sci. 76, 2493-2499.   DOI   ScienceOn
8 Kim, E.Y., I.H. Baik, J.H. Kim, S.R. Kim, and M.R. Rhyu. 2004. Screening of the antioxidant activity of some medicinal plants. Kor. J. Food Sci. Technol. 36, 333-338.   과학기술학회마을
9 Jain, S., H. Yadav, and P.R. Sinha. 2009. Antioxidant and cholesterol assimilation activities of selected lactobacilli and lactococci cultures. J. Dairy Res. 76, 385-391.   DOI   ScienceOn
10 Kullisaar, T., M. Zilmer, M. Mikelsaar, T. Vihalemm, H. Annuk, C. Kairane, and A. Kilk. 2002. Two antioxidative lactobacilli strains as promising probiotics. Int. J. Food Microbiol. 72, 215-224.   DOI   ScienceOn
11 Chang, J.H., K.M. Yoo, and I.K. Hwang. 2006. Screening of natural herb methanol extracts for antioxidant activity in V79-4 cells. Kor. J. Food Cookery Sci. 22, 428-437.   과학기술학회마을
12 Bauer, A.W., W.M.M. Kirby, J.C. Sherris, and M. Turck. 1966. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45, 493-496.   DOI
13 Brand-Williams, W., M.E. Cuvelier, and G. Barnes. 1985. Use of a free radical method to evaluate antioxidant activity. Lebensm. Wiss. Technol. 28, 25-30.
14 Castro, L. and B.A. Freeman. 2001. Reactive oxygen species in human health and disease. Nutrition 17, 161-165.   DOI   ScienceOn
15 Cho, Y.H., J.Y. Imm, H.Y. Kim, S.G. Hong, S.J. Hwang, D.J. Park, and S.J. Oh. 2009. Isolation and partial characterization of isoflavone transforming Lactobacillus plantarum YS712 for potential probiotic use. Kor. J. Food Sci. Ani. Resour. 29, 640-646.   과학기술학회마을   DOI
16 Barreto, J.C., G.S. Smith, N.H.P. Strobel, P.A. McQuillin, and T.A. Miller. 1995. Terephthalic acid: a dosimeter for the detection of hydroxyl radicals in vitro. Life Sci. 56, 89-96.
17 Choi, S.S., Y. Kim, K.S. Han, S. You, S. Oh, and S.H. Kim. 2006. Effects of Lactobacillus strains on cancer cell proliferation and oxidative stress in vitro. Lett. Appl. Microbiol. 42, 452-458.   DOI   ScienceOn
18 Gardner, H.W. 1975. Decomposition of linoleic acid hydroperoxides. J. Agric. Food Chem. 23, 129-136.   DOI
19 Akaike, T., K. Sato, S. Ijiri, Y. Miyamoto, M. Kondo, M. Ando, and H. Maeda. 1992. Bactericidal activity of alkyl peroxyl radicals generated by heme-iron-catalyzed decomposition of organic peroxides. Arch. Biochem. Biophys. 294, 55-63.   DOI   ScienceOn
20 Bai, J., A.M. Rodriguez, J.A. Melendez, and A.I. Cederbaum. 1999. Over-expression of catalase in cytosolic or mitochondrial compartment protests Hep G2 cells against oxidative injury. J. Bio. Chem. 274, 26217-26224.   DOI
21 Su, L., J.J. Yin, D. Charles, K. Zhou, J. Moore, and L. Yu. 2007. Total phenolic contents, chelating capacities, and radicalscavenging properties of black peppercorn, nutmeg, rosehip, cinnamon and oregano leaf. Food Chem. 100, 990-997.   DOI   ScienceOn
22 Wei Han, M.D., A. Mercenier, A.A. Belgnaoui, S. Pavan, F. Lamine, I.I. Swam, M. Kleerebezem, C.S. Cartier, M. Hisbergues, L. Bueno, V. Theodorou, and J. Fioramonti. 2006. Improvement of an experimental colitis in rats by lactic acid bacteria producing superoxide dismutase. Inflamm. Bowel Dis. 12, 1044-1052.   DOI   ScienceOn
23 Yu, L., J. Perret, D. Davy, J. Wilson, and C.L. Melby. 2002. Antioxidant properties of cereal products. J. Food Sci. 67, 2600-2603.   DOI   ScienceOn
24 Zitzelsberger, W., F. Gotz, and K.H. Schleifer. 1984. Distribution of superoxide dismutases oxides and NADH peroxides and various streptococci. FEMS Microbiol. Lett. 21, 243-246.   DOI   ScienceOn
25 Tampo, Y., M. Tsukamoto, and M. Yonaha. 1999. Superoxide production from paraquat evoke by exogenous NADPH in pulmonary endothelial cells. Free Radical Bio. Med. 27, 588-595.   DOI   ScienceOn
26 Tome, M.E., A.F. Baker, G. Powis, C.M. Payne, and M.M. Briehl. 2001. Catalase-overexpressing thymocytes are resistant to glucocorticoid-induced apoptosis and exhibit increased net tumor growth. Cancer Res. 61, 2766-2773.
27 Virtanen, T., A. Pihlanto, S. Akkanen, and H. Korhonen. 2007. Development of antioxidant activity in milk whey during fermentation with lactic acid bacteria. J. Appl. Microbiol. 102, 106-115.   DOI   ScienceOn
28 Scandalios, J.G. 2005. Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz. J. Med. Biol. Res. 38, 995-1014.   DOI
29 Shim, S.M. and J.H. Lee. 2008. PCR-Based detection of lactic acid bacteria in Korean fermented vegetables with recA gene targeted species-specific primers. Kor. J. Microbiol. Biotechnol. 36, 96-100.   과학기술학회마을
30 Shimamura, S., F. Abe, N. Ishibashi, H. Miyakawa, T. Yaeshima, T. araya, and M. Tomita. 1992. Relationship between oxygen sensitivity and oxygen metabolism of Bifidobacterium species. J. Dairy Sci. 75, 3296-3306.   DOI   ScienceOn
31 Rogosa, M. 1986. Bergey's Manual of Determinative Bacteriology. In R.E. Buchanan and N.E. Gibbons (eds.). Williams & Wilkins, Baltimore, MD, USA.
32 Oyaizu, M. 1986. Antioxidative activities of browing reaction prepared from glucosamine. Jpn. J. Nutr. 44, 307-315.   DOI
33 Park, S.K., S.S. Chun, Y.S. Cho, J.S. Moon, J.S. Choi, and S.W. Lee. 1995. Changes in mineral, pigment, texture, sensory score and microflora during fermentation of Gat(Leaf Mustard)-Kimchi. Kor. J. Post-Harvest Sci. Technol. Agri. Products 2, 131-138.
34 Pelicano, H., D. Carney, and P. Huang. 2004. ROS stress in cancer cells and therapeutic implications. Drug Resist. Update 7, 97-110.   DOI   ScienceOn
35 Saide, J.A.O. and S.E. Gilliland. 2005. Antioxidative activity of Lactobacilli measured by oxygen radical absorbance capacity. J. Dairy Sci. 88, 1352-1357.   DOI   ScienceOn
36 Lin, M.Y. and F.J. Chang. 2000. Antioxidative effect of intestinal bacteria Bifidobacterium longum ATCC 15708 and Lactobacillus acidophilus ATCC 4356. Digest. Dis. Sci. 45, 1617-1622.   DOI   ScienceOn
37 Sallmyr, A., J. Fan, and F.V. Rassool. 2008. Genomic instability in myeloid malignancies: Increased reactive oxygen species (ROS), DNA double strand breaks (DSBs) and error-prone repair. Cancer Lett. 270, 1-9.   DOI   ScienceOn
38 Lee, S.E., N.S. Seong, C.G. Park, and J.S. Seong. 2002. Screening for antioxidative activity of oriental medicinal plant materials. Kor. J. Med. Crop. Sci. 10, 171-176.   과학기술학회마을
39 Lin, M.Y. and C.L. Yen. 1999. Antioxidative ability of lactic acid bacteria. J. Agric. Food Chem. 47, 1460-1466.   DOI   ScienceOn