Browse > Article
http://dx.doi.org/10.4014/jmb.1310.10015

Proteolytic Activity of Escherichia coli Oligopeptidase B Against Proline-Rich Antimicrobial Peptides  

Mattiuzzo, Maura (Department of Life Sciences, University of Trieste)
Gobba, Cristian De (University of Copenhagen, Faculty of Science, Department of Food Science)
Runti, Giulia (Department of Life Sciences, University of Trieste)
Mardirossian, Mario (Department of Life Sciences, University of Trieste)
Bandiera, Antonella (Department of Life Sciences, University of Trieste)
Gennaro, Renato (Department of Life Sciences, University of Trieste)
Scocchi, Marco (Department of Life Sciences, University of Trieste)
Publication Information
Journal of Microbiology and Biotechnology / v.24, no.2, 2014 , pp. 160-167 More about this Journal
Abstract
Oligopeptidase B (OpdB) is a serine peptidase widespread among bacteria and protozoa that has emerged as a virulence factor despite its function has not yet been precisely established. By using an OpdB-overexpressing Escherichia coli strain, we found that the overexpressed peptidase makes the bacterial cells specifically less susceptible to several proline-rich antimicrobial peptides known to penetrate into the bacterial cytosol, and that its level of activity directly correlates with the degree of resistance. We established that E. coli OpdB can efficiently hydrolyze in vitro cationic antimicrobial peptides up to 30 residues in length, even though they contained several prolines, shortening them to inactive fragments. Two consecutive basic residues are a preferred cleavage site for the peptidase. In the case of a single basic residue, there is no cleavage if proline residues are present in the $P_1$ and $P_2$ positions. These results also indicate that cytosolic peptidases may cause resistance to antimicrobial peptides that have an intracellular mechanism of action, such as the proline-rich peptides, and may contribute to define the substrate specificity of the E. coli OpdB.
Keywords
Antimicrobial peptide; proline-rich; oligopeptidase B; proteolysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Morty RE, Troeberg L, Powers JC, Ono S, Lonsdale-Eccles JD, Coetzer TH. 2000. Characterisation of the antitrypanosomal activity of peptidyl alpha-aminoalkyl phosphonate diphenyl esters. Biochem. Pharmacol. 60: 1497-1504.   DOI   ScienceOn
2 Peschel A, Sahl HG. 2006. The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat. Rev. Microbiol. 4: 529-536.   DOI   ScienceOn
3 Podda E, Benincasa M, Pacor S, Micali F, Mattiuzzo M, Gennaro R, Scocchi M. 2006. Dual mode of action of Bac7, a proline-rich antibacterial peptide. Biochim. Biophys. Acta 1760: 1732-1740.   DOI   ScienceOn
4 Polgar L. 1997. A potential processing enzyme in prokaryotes: oligopeptidase B, a new type of serine peptidase. Proteins 28: 375-379.   DOI
5 Rawlings ND, Polgar L, Barrett AJ. 1991. A new family of serine-type peptidases related to prolyl oligopeptidase. Biochem. J. 279: 907-908.   DOI
6 Schmidtchen A, Frick IM, Andersson E, Tapper H, Bjorck L. 2002. Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol. Microbiol. 46: 157-168.   DOI   ScienceOn
7 Scocchi M, Tossi A, Gennaro R. 2011. Proline-rich antimicrobial peptides: converging to a non-lytic mechanism of action. Cell Mol. Life Sci. 68: 2317-2330.   DOI
8 Shinnar AE, Butler KL, Park HJ. 2003. Cathelicidin family of antimicrobial peptides: proteolytic processing and protease resistance. Bioorg. Chem. 31: 425-436.   DOI   ScienceOn
9 Sieprawska-Lupa M, Mydel P, Krawczyk K, Wojcik K, Puklo M, Lupa B, et al. 2004. D egradation o f hum an antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob. Agents Chemother. 48: 4673-4679.   DOI   ScienceOn
10 Kanatani A, Masuda T, Shimoda T, Misoka F, Lin XS, Yoshimoto T, Tsuru D. 1991. Protease II from Escherichia coli: sequencing and expression of the enzyme gene and characterization of the expressed enzyme. J. Biochem. (Tokyo) 110: 315-320.   DOI
11 Kragol G, Lovas S, Varadi G, Condie BA, Hoffmann R, Otvos Jr L. 2001. The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperoneassisted protein folding. Biochemistry 40: 3016-3026.   DOI   ScienceOn
12 Marcos JF, Gandia M. 2009. Antimicrobial peptides: to membranes and beyond. Expert Opin. Drug Discov. 4: 659-671.   DOI
13 Mattiuzzo M, Bandiera A, Gennaro R, Benincasa M, Pacor S, Antcheva N, Scocchi M. 2007. Role of the Escherichia coli SbmA in the antimicrobial activity of proline-rich peptides. Mol. Microbiol. 66: 151-163.   DOI   ScienceOn
14 Morty RE, Authie E, Troeberg L, Lonsdale-Eccles JD, Coetzer TH. 1999. Purification and characterisation of a trypsin-like serine oligopeptidase from Trypanosoma congolense. Mol. Biochem. Parasitol. 102: 145-155.   DOI   ScienceOn
15 Morty RE, Fulop V, Andrews NW. 2002. Substrate recognition properties of oligopeptidase B from Salmonella enterica serovar Typhimurium. J. Bacteriol. 184: 3329-3337.   DOI
16 Morty RE, Lonsdale-Eccles JD, Morehead J, Caler EV, Mentele R, Auerswald EA, et al. 1999. Oligopeptidase B from Trypanosoma brucei, a new member of an emerging subgroup of serine oligopeptidases. J. Biol. Chem. 274: 26149- 26156.   DOI
17 Morty RE, Pelle R, Vadasz I, Uzcanga GL, Seeger W, Bubis J. 2005. Oligopeptidase B from Trypanosoma evansi. A parasite peptidase that inactivates atrial natriuretic factor in the bloodstream of infected hosts. J. Biol. Chem. 280: 10925- 10937.   DOI   ScienceOn
18 Benincasa M, Mattiuzzo M, Herasimenka Y, Cescutti P, Rizzo R, Gennaro R. 2009. Activity of antimicrobial peptides in the presence of polysaccharides produced by pulmonary pathogens. J. Pept. Sci. 15: 595-600.   DOI   ScienceOn
19 Benincasa M, Scocchi M, Podda E, Skerlavaj B, Dolzani L, Gennaro R. 2004. Antimicrobial activity of Bac7 fragments against drug-resistant clinical isolates. Peptides 25: 2055-2061.   DOI   ScienceOn
20 Brogden KA. 2005. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3: 238-250.   DOI   ScienceOn
21 Burleigh BA, Caler EV, Webster P, Andrews NW. 1997. A cytosolic serine endopeptidase from Trypanosoma cruzi is required for the generation of $$Ca^{2+}$$ signaling in mammalian cells. J. Cell Biol. 136: 609-620.   DOI   ScienceOn
22 Hemerly JP, Oliveira V, Del Nery E, Morty RE, Andrews NW, Juliano MA, Juliano L. 2003. Subsite specificity (S3, S2, S1', S2', and S3') of oligopeptidase B from Trypanosoma cruzi and Trypanosoma brucei using fluorescent quenched peptides: comparative study and identification of specific carboxypeptidase activity. Biochem. J. 373: 933-939.   DOI   ScienceOn
23 Coetzer TH, Goldring JP, Huson LE. 2008. Oligopeptidase B: a processing peptidase involved in pathogenesis. Biochimie 90: 336-344.   DOI   ScienceOn
24 Fulop V, Bocskei Z, Polgar L. 1998. Prolyl oligopeptidase: an unusual beta-propeller domain regulates proteolysis. Cell 94: 161-170.   DOI   ScienceOn
25 Guina T, Yi EC, Wang H, Hackett M, Miller SI. 2000. A PhoP-regulated outer membrane protease of Salmonella enterica serovar Typhimurium promotes resistance to alphahelical antimicrobial peptides. J. Bacteriol. 182: 4077-4086.   DOI
26 Stumpe S, Schmid R, Stephens DL, Georgiou G, Bakker EP. 1998. Identification of OmpT as the protease that hydrolyzes the antimicrobial peptide protamine before it enters growing cells of Escherichia coli. J. Bacteriol. 180: 4002-4006.
27 Tomasinsig L, Scocchi M, Mettulio R, Zanetti M. 2004. Genome-wide transcriptional profiling of the Escherichia coli response to a proline-rich antimicrobial peptide. Antimicrob. Agents Chemother. 48: 3260-3267.   DOI   ScienceOn
28 Troeberg L, Pike RN, Morty RE, Berry RK, Coetzer TH, Lonsdale-Eccles JD. 1996. Proteases from Trypanosoma brucei brucei. Purification, characterisation and interactions with host regulatory molecules. Eur. J. Biochem. 238: 728-736.   DOI   ScienceOn
29 Zasloff M. 2002. Antimicrobial peptides of multicellular organisms. Nature 415: 389-395.   DOI   ScienceOn
30 Nguyen LT, Haney EF, Vogel HJ. 2011. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol. 29: 464-472.   DOI   ScienceOn
31 McLuskey K, Paterson NG, Bland ND, Isaacs NW, Mottram JC. 2010. Crystal structure of Leishmania major oligopeptidase B gives insight into the enzymatic properties of a trypanosomatid virulence factor. J. Biol. Chem. 285: 39249-39259.   DOI
32 Caler EV, Vaena de Avalos S, Haynes PA, Andrews NW, Burleigh BA. 1998. Oligopeptidase B-dependent signaling mediates host cell invasion by Trypanosoma cruzi. EMBO J. 17: 4975-4986.   DOI   ScienceOn