• Title/Summary/Keyword: Intracellular ROS

Search Result 606, Processing Time 0.023 seconds

Tributyltin Induces Apoptosis in R2C via Oxidative Stress and Caspase-3 Activation by Disturbance of $Ca^{2+}$

  • Lee, Kyung-Jin;Lee, Jong-Bin
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.3
    • /
    • pp.303-307
    • /
    • 2003
  • Tributyltin (TBT) used world-wide in antifouling paints toy ships is a wide-spread environmental pollutant. At low doses, antiproliferative modes of action have been shown to be involved, whereas at higher doses apoptosis seems to be the mechanism of toxicity in reproductive organs by TBT. In this study, we investigated that the mechanisms underlying apoptosis induced by TBT in R2C cell. Effects of TBT on intracellular $Ca^{2+}$ level and reactive oxygen species (ROS) were investigated in R2C cells by fluorescence detector. TBT significantly induced intracellular $Ca^{2+}$ level in a time-dependent manner. The rise in intracellular $Ca^{2+}$ level was followed by a time-dependent generation of reactive oxygen species (ROS) at the cytosol level. Simultaneously, TBT induced the release of cytochrome c from the mitochondrial membrane into the cytosol. Furthermore, ROS production and the release of cytochrome c were reduced by BAPTA, an intracellular $Ca^{2+}$ chelator, indicating the important role of $Ca^{2+}$ in R2C during these early intracellular events. In addition, Z-DEVD FMB, a caspase -3 inhibitor, decreased apoptosis by TBT. Taken together, the present results indicated that the apoptotic pathway by TBT might start with an increase in intracellular $Ca^{2+}$ level, continues with release of ROS and cytochrome c from mitochondria, activation of caspases, and finally results in DNA fragmentation.

Effects of NaOCl on the Intracellular Calcium Concentration in Rat Dorsal Root Ganglion Neurons

  • Lee, Hae-In;Chun, Sang-Woo
    • International Journal of Oral Biology
    • /
    • v.35 no.3
    • /
    • pp.129-135
    • /
    • 2010
  • Recent studies have implicated reactive oxygen species (ROS) as determinants of the pathological pain caused by the activation of peripheral neurons. It has not been elucidated, however, how ROS activate the primary sensory neurons in the pain pathway. In this study, calcium imaging was performed to investigate the effects of NaOCl, a ROS donor, on the intracellular calcium concentration ($[Ca^{2+}]i$) in acutely dissociated dorsal root ganglion (DRG) neurons. DRG was sequentially treated with 0.2 mg/ml of both protease and thermolysin, and single neurons were then obtained by mechanical dissociation. The administration of NaOCl then caused a reversible increase in the $[Ca^{2+}]i$, which was inhibited by pretreatment with phenyl-N-tertbuthylnitrone (PBN) and isoascorbate, both ROS scavengers. The NaOCl-induced $[Ca^{2+}]i$ increase was suppressed both in a calcium free solution and after depletion of the intracellular $Ca^{2+}$ pool by thapsigargin. Additionally, this increase was predominantly blocked by pretreatment with the transient receptor potential (TRP) antagonists, ruthenium red ($50\;{\mu}M$) and capsazepine ($10\;{\mu}M$). Collectively, these results suggest that an increase in the intracellular calcium concentration is produced from both extracellular fluid and the intracellular calcium store, and that TRP might be involved in the sensation of pain induced by ROS.

[Ca2+]-dependent Generation of Intracellular Reactive Oxygen Species Mediates Maitotoxin-induced Cellular Responses in Human Umbilical Vein Endothelial Cells

  • Yi, Sun-Ju;Kim, Kyung Hwan;Choi, Hyun Jung;Yoo, Je Ok;Jung, Hyo-Il;Han, Jeong-A;Kim, Young-Myeong;Suh, In Bum;Ha, Kwon-Soo
    • Molecules and Cells
    • /
    • v.21 no.1
    • /
    • pp.121-128
    • /
    • 2006
  • Maitotoxin (MTX) is known as one of the most potent marine toxins involved in Ciguatera poisoning, but intracellular signaling pathways caused by MTX was not fully understood. Thus, we have investigated whether intracellular reactive oxygen species (ROS) are involved in MTX-induced cellular responses in human umbilical vein endothelial cells. MTX induced a dose-dependent increase of intracellular [$Ca^{2+}$]. MTX stimulated the production of intracellular ROS in a dose- and time-dependent manner, which was suppressed by BAPTA-AM, an intracellular $Ca^{2+}$ chelator. Ionomycin also elevated the ROS production in a dose-dependent manner. MTX elevated transamidation activity in a time-dependent manner and the activation was largely inhibited by transfection of tissue transglutaminase siRNA. The activation of tissue transglutaminase and ERK1/2 by MTX was suppressed by BAPTA-AM or ROS scavengers. In addition, MTX-induced cell death was significantly delayed by BAPTA-AM or a ROS scavenger. These results suggest that [$Ca^{2+}$]-dependent generation of intracellular ROS, at least in part, play an important role in MTX-stimulated cellular responses, such as activation of tTGase, ERK phosphorylation, and induction of cell death, in human umbilical vein endothelial cells.

How Extracellular Reactive Oxygen Species Reach Their Intracellular Targets in Plants

  • Jinsu Lee;Minsoo Han;Yesol Shin;Jung-Min Lee;Geon Heo;Yuree Lee
    • Molecules and Cells
    • /
    • v.46 no.6
    • /
    • pp.329-336
    • /
    • 2023
  • Reactive oxygen species (ROS) serve as secondary messengers that regulate various developmental and signal transduction processes, with ROS primarily generated by NADPH OXIDASEs (referred to as RESPIRATORY BURST OXIDASE HOMOLOGs [RBOHs] in plants). However, the types and locations of ROS produced by RBOHs are different from those expected to mediate intracellular signaling. RBOHs produce O2•- rather than H2O2 which is relatively long-lived and able to diffuse through membranes, and this production occurs outside the cell instead of in the cytoplasm, where signaling cascades occur. A widely accepted model explaining this discrepancy proposes that RBOH-produced extracellular O2•- is converted to H2O2 by superoxide dismutase and then imported by aquaporins to reach its cytoplasmic targets. However, this model does not explain how the specificity of ROS targeting is ensured while minimizing unnecessary damage during the bulk translocation of extracellular ROS (eROS). An increasing number of studies have provided clues about eROS action mechanisms, revealing various mechanisms for eROS perception in the apoplast, crosstalk between eROS and reactive nitrogen species, and the contribution of intracellular organelles to cytoplasmic ROS bursts. In this review, we summarize these recent advances, highlight the mechanisms underlying eROS action, and provide an overview of the routes by which eROS-induced changes reach the intracellular space.

Comparison of Quantitative Structure-Activity Relationship and Chemical Antioxidant Activity of β-Carotene and Lycopene and Their Protective Effects on Intracellular Oxidative Stress (β-Carotene과 Lycopene의 양자역학 및 화학적 항산화능과 세포 내 산화적 스트레스 보호 효과의 비교)

  • Park, Sun Young;Jung, Hana;Jhin, Changho;Hwang, Keum Taek;Kwak, Ho-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.9
    • /
    • pp.1143-1150
    • /
    • 2017
  • The aim of this study was to determine the chemical and intracellular antioxidant activities of ${\beta}$-carotene and lycopene and to compare their quantitative structure-activity relationship (QSAR). In our previous study, the second ionization energy of lycopene was higher than that of ${\beta}$-carotene, as calculated by QSAR. Chemical antioxidant activities of ${\beta}$-carotene, lycopene, and Trolox were examined by measuring ferric reducing antioxidant power (FRAP) and 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. Intracellular antioxidant activities were evaluated by intracellular reactive oxygen species (ROS) and DNA fragmentation. The FRAP of lycopene was higher than that of ${\beta}$-carotene (P<0.05), and the two carotenoids had similar antioxidant activities in DPPH radical scavenging activity assay. Trolox had the greatest chemical antioxidant activities (P<0.05). When RAW264.7 cells were treated with lipopolysaccharide (LPS) (100 ng/mL) for 20 h, intracellular ROS and DNA fragmentation significantly increased (P<0.05). RAW 264.7 cells pretreated with ${\beta}$-carotene ($4{\mu}M$) and lycopene ($0.4{\sim}2{\mu}M$) for 4 h formed significantly less intracellular ROS than LPS-treated control cells (P<0.05), whereas cells with Trolox did not reduce production of intracellular ROS. In addition, cells pretreated with $2{\mu}M$ lycopene produced less intracellular ROS than those treated with ${\beta}$-carotene (P<0.05). DNA fragmentation of cells with ${\beta}$-carotene and lycopene was similar to that of LPS-treated control cells as measured by Hoechst staining. The antioxidant ability of lycopene was greater than that of ${\beta}$-carotene in the QSAR, FRAP, and intracellular ROS assays (P<0.05). ${\beta}$-Carotene and lycopene had lower antioxidant activities as measured by FRAP (P<0.05) but higher intracellular protective effects against LPS-induced oxidative stress in comparison with Trolox.

Bcl-2 Overexpression Inhibits Generation of Intracellular Reactive Oxygen Species and Blocks Adriamycin-induced Apoptosis in Bladder Cancer Cells

  • Kong, Chui-Ze;Zhang, Zhe
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.895-901
    • /
    • 2013
  • Resistance to induction of apoptosis is a major obstacle for bladder cancer treatment. Bcl-2 is thought to be involved in anti-apoptotic signaling. In this study, we investigated the effect of Bcl-2 overexpression on apoptotic resistance and intracellular reactive oxygen species (ROS) generation in bladder cancer cells. A stable Bcl-2 overexpression cell line, BIU87-Bcl-2, was constructed from human bladder cancer cell line BIU87 by transfecting recombinant Bcl-2 [pcDNA3.1(+)-Bcl-2]. The sensitivity of transfected cells to adriamycin (ADR) was assessed by MTT assay. Apoptosis was examined by flow cytometry and acridine orange fluorescence staining. Intracellular ROS was determined using flow cytometry, and the activities of superoxide dismutase (SOD) and catalase (CAT) were also investigated by the xanthinoxidase and visible radiation methods using SOD and CAT detection kits. The susceptibility of BIU87-Bcl-2 cells to ADR treatment was significantly decreased as compared with control BIU87 cells. Enhanced expression of Bcl-2 inhibited intracellular ROS generation following ADR treatment. Moreover, the suppression of SOD and CAT activity induced by ADR treatment was blocked in the BIU87-Bcl-2 case but not in their parental cells. The overexpression of Bcl-2 renders human bladder cancer cells resistant to ADR-induced apoptosis and ROS might act as an important secondary messenger in this process.

Suppression of Arsenic Trioxide-induced Apoptosis in HeLa Cells by N-Acetylcysteine

  • Han, Yong Hwan;Kim, Sung Zoo;Kim, Suhn Hee;Park, Woo Hyun
    • Molecules and Cells
    • /
    • v.26 no.1
    • /
    • pp.18-25
    • /
    • 2008
  • Arsenic trioxide (ATO) can affect many biological functions such as apoptosis and differentiation in various cells. We investigated the involvement of ROS and GSH in ATO-induced HeLa cell death using ROS scavengers, especially N-acetylcysteine (NAC). ATO increased intracellular ${O_2}^{{\cdot}-}$ levels and reduced intracellular GSH content. The ROS scavengers, Tempol, Tiron and Trimetazidine, did not significantly reduce levels of ROS or GSH depletion in ATO-treated HeLa cells. Nor did they reduce the apoptosis induced by ATO. In contrast, treatment with NAC reduced ROS levels and GSH depletion in the ATO-treated HeLa cells and prevented ATO-induced apoptosis. Treatment with exogenous SOD and catalase reduced the depletion of GSH content in ATO-treated cells. Catalase strongly protected the cells from ATO-induced apoptosis. In addition, treatment with SOD, catalase and NAC slightly inhibited the G1 phase accumulation induced by ATO. In conclusion, NAC protects HeLa cells from apoptosis induced by ATO by up-regulating intracellular GSH content and partially reducing the production of ${O_2}^{{\cdot}-}$.

Detection of Mitochondrial Reactive Oxygen Species in Living Rat Trigeminal Caudal Neurons

  • Lee, Hae In;Chun, Sang Woo
    • International Journal of Oral Biology
    • /
    • v.40 no.2
    • /
    • pp.103-109
    • /
    • 2015
  • Growing evidence suggests that mitochondrial reactive oxygen species (ROS) are involved in various pain states. This study was performed to investigate whether ROS-induced changes in neuronal excitability in trigeminal subnucleus caudalis are related to ROS generation in mitochondria. Confocal scanning laser microscopy was used to measure ROS-induced fluorescence intensity in live rat trigeminal caudalis slices. The ROS level increased during the perfusion of malate, a mitochondrial substrate, after loading of 2',7'-dichlorofluorescin diacetate ($H_2DCF-DA$), an indicator of the intracellular ROS; the ROS level recovered to the control condition after washout. When pre-treated with phenyl N-tert-butylnitrone (PBN) and 4-hydroxy-2,2,6,6-tetramethylpiperidene-1-oxyl (TEMPOL), malate-induced increase of ROS level was suppressed. To identify the direct relation between elevated ROS levels and mitochondria, we applied the malate after double-loading of $H_2DCF-DA$ and chloromethyl-X-rosamine (CMXRos; MitoTracker Red), which is a mitochondria-specific fluorescent probe. As a result, increase of both intracellular ROS and mitochondrial ROS were observed simultaneously. This study demonstrated that elevated ROS in trigeminal subnucleus caudalis neuron can be induced through mitochondrial-ROS pathway, primarily by the leakage of ROS from the mitochondrial electron transport chain.

Attenuation of ROS Generation by KCNE1 Genes in Cisplatin-treated Auditory Cells

  • Kim, Eun Sook;Park, Sang-Ho;Park, Raekil
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.45 no.3
    • /
    • pp.114-119
    • /
    • 2013
  • Potassium is essential for the proper functioning of the ears. The inner ear's endolymph differs from all other extracellular fluids (in its positive potential) and in the ionic compositions in the various parts of the endolymphatic space. Ion concentration of the endolymph is 150 mM of potassium, which is comparable to the concentrations in other organs. Cisplatin (cis-diamminedichloroplatinum II: CDDP) is one of the most effective anticancer drugs, widely used against various tumors. However, its clinical use is limited by the onset of severe side effects, including ototoxicity and nephrotoxicity. For ototoxicity, a number of evidences in cytotoxic mechanism of cisplatin, including perturbation of redox status, increase in lipid peroxydation, and formation of DNA adduct, have been suggested. Therefore, in this study, the author investigated the relationship between the potassium ions on cisplatin-induced cytotoxicity in HEI-OC1 cells associated with reactive oxygen species (ROS). KCNE1 gene expression by the concentration of intracellular potassium appeared in the plasma membrane and increased the concentration of intracellular potassium. Cisplatin decreased the viability of HEI-OC1 cells, but the KCNE1 gene increased. Also, the KCNE1 gene significantly suppressed generation of intracellular ROS by cisplatin. Western blot analysis showed that the KCNE1 gene increased phase II detoxification enzymes markers such as superoxide dismutase 1 (SOD1), superoxide dismutase (SOD2), NAD(P)H:quinine oxidoreductases (NQO1), which were associated with the scavenger of ROS. These results suggest that the KCNE1 gene for intracellular potassium concentration ultimately prevents ROS generation from cisplatin and further contributes to protect auditory sensory hair cells from ROS produced by cisplatin.

  • PDF

The Effects of Silica Nanoparticles in Macrophage Cells

  • Kim, Seungjae;Jang, Jiyoung;Kim, Hyojin;Choi, Hoon;Lee, Kangtaek;Choi, In-Hong
    • IMMUNE NETWORK
    • /
    • v.12 no.6
    • /
    • pp.296-300
    • /
    • 2012
  • Silica nanoparticles, which are applicable in many industrial fields, have been reported to induce cellular changes such as cytotoxicity in various cells and fibrosis in lungs. Because the immune system is the primary targeting organ reacting to internalized exogenous nanoparticles, we tried to figure out the immunostimulatory effect of silica nanoparticles in macrophages using differently sized silica nanoparticles. Using U937 cells we assessed cytotoxicity by CCK-8 assay, ROS generation by CM-$H_2DCFDA$, intracellular $Ca^{{+}{+}}$ levels by staining with Fluo4-AM and IL-8 production by ELISA. At non-toxic concentration, the intracellular $Ca^{{+}{+}}$ level has increased immediately after exposure to 15 nm particles, not to larger particles. ROS generation was detected significantly in response to 15 nm particles. However, all three different sizes of silica nanoparticles induced IL-8 production. 15 nm silica nanoparticles are more stimulatory than larger particles in cytotoxicity, intracellular $Ca^{{+}{+}}$ increase and ROS generation. But IL-8 production was induced to same levels with 50 or 100 nm particles. Therefore, IL-8 production induced by silica nanoparticles may be dependent on other mechanisms rather than intracellular $Ca^{{+}{+}}$ increase and ROS generation.