Effects of NaOCl on the Intracellular Calcium Concentration in Rat Dorsal Root Ganglion Neurons

  • Lee, Hae-In (Dept. of Oral Physiology, College of Dentistry, Institute of Wonkwang Biomaterial and Implant, Wonkwang University) ;
  • Chun, Sang-Woo (Dept. of Oral Physiology, College of Dentistry, Institute of Wonkwang Biomaterial and Implant, Wonkwang University)
  • Received : 2010.09.15
  • Accepted : 2010.09.24
  • Published : 2010.09.30

Abstract

Recent studies have implicated reactive oxygen species (ROS) as determinants of the pathological pain caused by the activation of peripheral neurons. It has not been elucidated, however, how ROS activate the primary sensory neurons in the pain pathway. In this study, calcium imaging was performed to investigate the effects of NaOCl, a ROS donor, on the intracellular calcium concentration ($[Ca^{2+}]i$) in acutely dissociated dorsal root ganglion (DRG) neurons. DRG was sequentially treated with 0.2 mg/ml of both protease and thermolysin, and single neurons were then obtained by mechanical dissociation. The administration of NaOCl then caused a reversible increase in the $[Ca^{2+}]i$, which was inhibited by pretreatment with phenyl-N-tertbuthylnitrone (PBN) and isoascorbate, both ROS scavengers. The NaOCl-induced $[Ca^{2+}]i$ increase was suppressed both in a calcium free solution and after depletion of the intracellular $Ca^{2+}$ pool by thapsigargin. Additionally, this increase was predominantly blocked by pretreatment with the transient receptor potential (TRP) antagonists, ruthenium red ($50\;{\mu}M$) and capsazepine ($10\;{\mu}M$). Collectively, these results suggest that an increase in the intracellular calcium concentration is produced from both extracellular fluid and the intracellular calcium store, and that TRP might be involved in the sensation of pain induced by ROS.

Keywords

References

  1. Adelson, D.W, Wei, J.Y, Kruger, L. $H_{2}O_{2}$ sensitivity of afferent splanchnic C fiber units in vitro. J Neurophysiol. 1996;76: 371-80. https://doi.org/10.1152/jn.1996.76.1.371
  2. Akaishi T, Nakazawa K, Sato K, Saito H, Ohno Y, Ito Y. Hydrogen peroxide modulates whole cell $Ca^{2+}$ currents through L-type channels in cultured rat dentate granule cells. Neurosci Lett. 2004;356:25-8. https://doi.org/10.1016/j.neulet.2003.11.012
  3. Albrich JM, McCarthy CA, Hurst JK. Biological reactivity of hypochlorous acid: implications for microbicidal mechanisms of leukocyte myeloperoxidase. Proc Natl Acad Sci USA. 1981;78:210-4. https://doi.org/10.1073/pnas.78.1.210
  4. Andrea P, Romanello M, Massimiliano B, Steinberg TH, Tell G. $H_{2}O_{2}$ modulates purinergic-dependent calcium signalling in osteoblast-like cells. Cell Calcium. 2008;43:457-68. https://doi.org/10.1016/j.ceca.2007.07.007
  5. Baran CP, Zeigler MM, Tridandapani S, Marsh CB. The role of ROS and RNA in regulating life and death of blood monocytes. Curr Pharm Des. 2004;10:855-66. https://doi.org/10.2174/1381612043452866
  6. Bubici C, Papa S, Pham CG, Zazzeroni F, Franzoso G. The NFkappaB- mediated control of ROS and JNK signaling. Histol Histopathol. 2006;21(1):69-80.
  7. Chuang SC, Bianchi R, Wong RK. Group I mGluR activation turns on a voltage-gated inward current in hippocampal pyramidal cells. J Neurophysiol. 2000;83:2844-53. https://doi.org/10.1152/jn.2000.83.5.2844
  8. Daugherty A, Dunn JL, Rateri DL, Heinecke JW. Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J Clin Invest. 1994;94:437-44. https://doi.org/10.1172/JCI117342
  9. Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47-95. https://doi.org/10.1152/physrev.00018.2001
  10. Eley DW, Eley JM, Korecky B, Fliss H. Impairment of cardiac contractility and sarcoplasmic reticulum $Ca^{2+}$ ATPase activity by hypochlorous acid: reversal by dithiothreitol. Can J Physiol Pharmacol. 1991;69:1677-85. https://doi.org/10.1139/y91-249
  11. Favero TG, Zable AC, Abramson JJ. Hydrogen peroxide stimulates the $Ca^{2+}$ release channel from skeletal muscle sarcoplasmic reticulum. J Biol Chem. 1995;270:25557-63. https://doi.org/10.1074/jbc.270.43.25557
  12. Gonzalez C, Sanz-Alfayate G, Agapito MT, Gomez-Nino A, Rocher A, Obeso A. Significance of ROS in oxygen sensing in cell systems with sensitivity to physiological hypoxia. Respir Physiol Neurobiol. 2002;22; 132(1):17-41. https://doi.org/10.1016/S1569-9048(02)00047-2
  13. Hirono M, Konishi S, Yoshioka T. Phospholipase C-independent group I metabotropic glutamate receptor-mediated inward current in mouse Purkinje cell. Biochem Biophys Res Commun. 1998;251:753-8. https://doi.org/10.1006/bbrc.1998.9465
  14. Hong JH, Moon SJ, Byun HM, Kim MS, Jo H, Bae YS, Lee SI, Bootman MD, Roderick HL, Shin DM, Seo JT. Clinical role of phospholipase C1 in the generation of H2O2-evoked [$Ca^{2+}$]i oscillations in cultured rat cortical astrocytes. J Biol Chem. 2006;281:13057-67. https://doi.org/10.1074/jbc.M601726200
  15. Hu Q, Zheng G, Zweier JL, Deshpande S, Irani K, Ziegelstein RC. NADPH oxidase activation increases the sensitivity of intracellular $Ca^{2+}$ stores to inositol 1,4,5-trisphosphate in human endothelial cells. J Biol Chem. 2000;275:15749-57. https://doi.org/10.1074/jbc.M000381200
  16. Khakh BS, North RA. P2X receptors as cell-surface ATP sensors in health and disease. Nature. 2006;3;442(7102): 527-32.
  17. Khalil Z, Khodr B. A role for free radicals and nitric oxide in delayed recovery in aged rats with chronic constriction nerve injury. Free Rad Biol Med. 2001;31:430-9. https://doi.org/10.1016/S0891-5849(01)00597-4
  18. Khalil Z, Liu T, Helme RD. Free radicals contribute to the reduction in peripheral vascular responses and the maintenance of thermal hyperalgesia in rats with chronic constriction injury. Pain. 1999;79:31-7. https://doi.org/10.1016/S0304-3959(98)00143-2
  19. Kim HK, Park SK, Zhou JL, Taglialatela G, Chung K, Coggeshall RE, Chung JM. Reactive oxygen species (ROS) play an important role in a rat model of neuropathic pain. Pain. 2004,111:116-24. https://doi.org/10.1016/j.pain.2004.06.008
  20. Kim HK, Kim JH, Gao X, Zhou JL, Lee I, Chung K, Chung JM. Analgesic effect of vitamin E is mediated by reducing central sensitization in neuropathic pain. Pain. 2006;122:53-62. https://doi.org/10.1016/j.pain.2006.01.013
  21. Kumazawa T, Perl ER. Excitation of marginal and substantia gelatinosa neurons in the primate spinal cord: indication of their place in dorsal horn functional organization. J Comp Neurol. 1978;177:417-34. https://doi.org/10.1002/cne.901770305
  22. Lai J, Hunter JC, Porreca F. The role of voltage-gated sodium channels in neuropathic pain. Curr Opin Neurobiol. 2003; 13:291-7. https://doi.org/10.1016/S0959-4388(03)00074-6
  23. Lee YJ, Lee CH, Oh UT. Painful channels in sensory neurons. Mol cells. 2005;20(3):315-24.
  24. Levy D, Zochodne DW. Local nitric oxide synthase activity in a model of neuropathic pain. Eur J Neurosci. 1998;10:1846-55. https://doi.org/10.1046/j.1460-9568.1998.00186.x
  25. Lim SJ, Chun SW. Mechanisms of tert-buthyl hydroperoxideinduced membrane depolarization in rat spinal substantia gelatinosa neurons. Int J Oral Biol. 2008;33:117-23.
  26. Liu D, Liu J, Sun D, Wen J. The time course of hydroxyl radical formation following spinal cord injury: the possible role of the iron-catalyzed Haber-Weiss reaction. J Neurotrauma. 2004; 21:805-16. https://doi.org/10.1089/0897715041269650
  27. Nagra RM, Becher B, Tourtellotte WW, Antel JP, Gold D, Paladino T, Smith RA, Nelson JR, Reynolds WF. Immunohistochemical and genetic evidence of myeloperoxidase involvement in multiple sclerosis. J Neuroimmunal. 1997; 78:97-107. https://doi.org/10.1016/S0165-5728(97)00089-1
  28. Parekh AB, Penner R. Store depletion and calcium influx. Physiol Rev. 1997;77(4):901-30. https://doi.org/10.1152/physrev.1997.77.4.901
  29. Park ES, Gao X, Chung JM, Chung K. Levels of mitochondrial reactive oxygen species increase in rat neuropathic spinal doesal horn neurons. Neurosci Lett. 2006;391:108-11. https://doi.org/10.1016/j.neulet.2005.08.055
  30. Pop-Busui, R, Sima, A, Stevens, M. Diabetic neuropathy and oxidative stress. Diabetes Metab Res Rev. 2006;22:257-73. https://doi.org/10.1002/dmrr.625
  31. Pullar JM, Winterbourn CC, Vissers MC. Loss of GSH and thiol enzymes in endothelial cell exposed to sublethal concentrations of hypochlorous acid. Am J Physiol. 1999;277:H1505-12.
  32. Redondo PC, Salido GM, Rosado JA, Pariente JA. Effect of hydrogen peroxide on $Ca^{2+}$ mobilisation in human platelets through sulphydryl oxidation dependent and independent mechanisms. Biochem Pharmacol. 2004;67:491-502. https://doi.org/10.1016/j.bcp.2003.09.031
  33. Ruan T, Lin YS, Lin KS, Kou YR. Sensory transduction of pulmonary reactive oxygen species by capsaicin-sensitive vagal lung afferent fibres in rats. J Physiol. 2005;565:563-78. https://doi.org/10.1113/jphysiol.2005.086181
  34. Sawada Y, Hosokawa H, Matsumura K, Kobayashi S. Activation of transient receptor potential ankyrin 1 by hydrogen peroxide.Eur J Neurosci. 2008;27:1131-42. https://doi.org/10.1111/j.1460-9568.2008.06093.x
  35. Schraufstatter IU, Browne K, Harris A, Hyslop PA, Jackson JH, Quehenberger O, Cochrane CG. Mechanisms of hypochlorite injury of target cells. J Clin Invest. 1990;85(2):554-62. https://doi.org/10.1172/JCI114472
  36. Spicarova D, Palecek J. The role of spinal cord vanilloid (TRPV1) receptors in pain modulation. Physiol Res. 2008; 57(3):S69-77.
  37. Vissers MC, Winterbourn CC. Oxidation of intracellular glutathione after exposure of human red blood cells to hypochlorous acid. Biochem J. 1995;307(Pt1):57-62. https://doi.org/10.1042/bj3070057
  38. Wagner, R, Heckman, H.M, Myers, R.R. Wallerian degeneration and hyperalgesia after peripheral nerve injury are glutathionedependent. Pain. 1998;77:173-9. https://doi.org/10.1016/S0304-3959(98)00091-8
  39. Wang ZQ, Porreca F, Cuzzocrea S, Galen K, Lightfoot R, Masini E. A newly identified role for superoxide in inflammatory pain. J Pharmacol Exp Ther. 2004;309:869-78. https://doi.org/10.1124/jpet.103.064154
  40. Watt, B.E, Proudfoot, A.T, Vale, J.A. Hydrogen peroxide poisoning. Toxicol Rev. 2004;23:51-7. https://doi.org/10.2165/00139709-200423010-00006
  41. Wehage E, Eisfeld J, Heiner I, Jungling E, Zitt C, Luckhoff A. Activation of the cation channel long transient receptor potential channel 2 (LTRPC2) by hydrogen peroxide. A splice variant reveals a mode of activation independent of ADP-ribose. J Biol Chem. 2002;277:23150-6. https://doi.org/10.1074/jbc.M112096200
  42. Wemmie JA, Price MP, Welsh MJ. Acid-sensing ion channels: advances, questions and therapeutic opportunities. Trends Neurosci. 2006;29(10):578-86. https://doi.org/10.1016/j.tins.2006.06.014
  43. Willis WD, Coggeshall RE. Sensory mechanisms of the spinal cord. Kluwer Academic/Plenum Publishers. New York, 2004.
  44. Winterbourn CC. Comparative reactivities of various biological compounds with myeloperoxidase-hydrogen peroxide-chloride, and similarity of the oxidant to hypochlorite. Biochim Biophys Acta. 1985;840(2):204-10. https://doi.org/10.1016/0304-4165(85)90120-5
  45. Woolf CJ, Thompson SWN. The induction and maintenance of central sensitization is dependent on N-methyl-D-aspartic acid receptor activation; implication for the treatment of postinjury pain hypersensitivity states. Pain. 1991;44:293-9. https://doi.org/10.1016/0304-3959(91)90100-C
  46. Yoshimura M, Jessel TM. Membrane properties of rat substantia gelatinosa neurons in vitro. J Neurophysiol. 1989;62:109-18. https://doi.org/10.1152/jn.1989.62.1.109
  47. Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial ROSinduced ROS release: an update and review. Biochim Biophys Acta. 2006;1757(5-6):509-17. https://doi.org/10.1016/j.bbabio.2006.04.029