Suppression of Arsenic Trioxide-induced Apoptosis in HeLa Cells by N-Acetylcysteine

  • Han, Yong Hwan (Department of Physiology, Medical School, Institute for Medical Sciences, Center for Healthcare Technology Development, Chonbuk National University) ;
  • Kim, Sung Zoo (Department of Physiology, Medical School, Institute for Medical Sciences, Center for Healthcare Technology Development, Chonbuk National University) ;
  • Kim, Suhn Hee (Department of Physiology, Medical School, Institute for Medical Sciences, Center for Healthcare Technology Development, Chonbuk National University) ;
  • Park, Woo Hyun (Department of Physiology, Medical School, Institute for Medical Sciences, Center for Healthcare Technology Development, Chonbuk National University)
  • Received : 2007.10.24
  • Accepted : 2008.01.14
  • Published : 2008.07.31

Abstract

Arsenic trioxide (ATO) can affect many biological functions such as apoptosis and differentiation in various cells. We investigated the involvement of ROS and GSH in ATO-induced HeLa cell death using ROS scavengers, especially N-acetylcysteine (NAC). ATO increased intracellular ${O_2}^{{\cdot}-}$ levels and reduced intracellular GSH content. The ROS scavengers, Tempol, Tiron and Trimetazidine, did not significantly reduce levels of ROS or GSH depletion in ATO-treated HeLa cells. Nor did they reduce the apoptosis induced by ATO. In contrast, treatment with NAC reduced ROS levels and GSH depletion in the ATO-treated HeLa cells and prevented ATO-induced apoptosis. Treatment with exogenous SOD and catalase reduced the depletion of GSH content in ATO-treated cells. Catalase strongly protected the cells from ATO-induced apoptosis. In addition, treatment with SOD, catalase and NAC slightly inhibited the G1 phase accumulation induced by ATO. In conclusion, NAC protects HeLa cells from apoptosis induced by ATO by up-regulating intracellular GSH content and partially reducing the production of ${O_2}^{{\cdot}-}$.

Keywords

Acknowledgement

Supported by : Korean Science and Engineering Foundation, Korea Research Foundation

References

  1. Baj, G., Arnulfo, A., Deaglio, S., Mallone, R., Vigone, A., De Cesaris, M.G., Surico, N., Malavasi, F., and Ferrero, E. (2002). Arsenic trioxide and breast cancer: analysis of the apoptotic, differentiative and immunomodulatory effects. Breast Cancer Res. Treat. 73, 61-73 https://doi.org/10.1023/A:1015272401822
  2. Baran, C.P., Zeigler, M.M., Tridandapani, S., and Marsh, C.B. (2004). The role of ROS and RNS in regulating life and death of blood monocytes. Curr. Pharm. Des.10, 855-866 https://doi.org/10.2174/1381612043452866
  3. Bubici, C., Papa, S., Pham, C.G., Zazzeroni, F., and Franzoso, G. (2006). The NF-kappaB-mediated control of ROS and JNK signaling. Histol. Histopathol.21, 69-80
  4. Chen, T.J., Jeng, J.Y., Lin, C.W., Wu, C.Y., and Chen, Y.C. (2006). Quercetin inhibition of ROS-dependent and -independent apoptosis in rat glioma C6 cells. Toxicology 223, 113-126 https://doi.org/10.1016/j.tox.2006.03.007
  5. Cuzzocrea, S., McDonald, M.C., Mazzon, E., Siriwardena, D., Costantino, G., Fulia, F., Cucinotta, G., Gitto, E., Cordaro, S., Barberi, I., et al. (2000). Effects of tempol, a membrane-permeable radical scavenger, in a gerbil model of brain injury. Brain Res.875, 96-106 https://doi.org/10.1016/S0006-8993(00)02582-8
  6. Dai, J., Weinberg, R.S., Waxman, S., and Jing, Y. (1999). Malignant cells can be sensitized to undergo growth inhibition and apoptosis by arsenic trioxide through modulation of the glutathione redox system. Blood 93, 268-277
  7. Dasmahapatra, G., Rahmani, M., Dent, P., and Grant, S. (2006). The tyrphostin adaphostin interacts synergistically with proteasome inhibitors to induce apoptosis in human leukemia cells through a reactive oxygen species (ROS)-dependent mechanism. Blood 107, 232-240 https://doi.org/10.1182/blood-2005-06-2302
  8. Gonzalez, C., Sanz-Alfayate, G., Agapito, M.T., Gomez-Nino, A., Rocher, A., and Obeso, A. (2002). Significance of ROS in oxygen sensing in cell systems with sensitivity to physiological hypoxia. Respir. Physiol. Neurobiol. 132, 17-41 https://doi.org/10.1016/S1569-9048(02)00047-2
  9. Greenstock, C.L., and Miller, R.W. (1975). The oxidation of tiron by superoxide anion. Kinetics of the reaction in aqueous solution in chloroplasts. Biochim. Biophys. Acta. 396, 11-16 https://doi.org/10.1016/0005-2728(75)90184-X
  10. Haga, N., Fujita, N., and Tsuruo, T. (2005). Involvement of mitochondrial aggregation in arsenic trioxide (As2O3)-induced apoptosis in human glioblastoma cells. Cancer science 96, 825-833 https://doi.org/10.1111/j.1349-7006.2005.00114.x
  11. Han, S.S., Kim, K., Hahm, E.R., Park, C.H., Kimler, B.F., Lee, S.J., Lee, S.H., Kim, W.S., Jung, C.W., Park, K., et alK (2005). Arsenic trioxide represses constitutive activation of NF-kappaB and COX-2 expression in human acute myeloid leukemia, HL-60. J. Cell. Biochem. 94, 695-707 https://doi.org/10.1002/jcb.20337
  12. Han, Y.H., Kim, S.Z., Kim, S.H., and Park, W.H. (2007). Arsenic trioxide inhibits growth of As4.1 juxtaglomerular cells via cell cycle arrest and caspase-independent apoptosis. Am. J. Physiol. Renal. Physiol. 293, F511-520 https://doi.org/10.1152/ajprenal.00385.2006
  13. Han, Y.H., Kim, S.H., Kim, S.Z., and Park, W.H. (2008a). Apoptosis in arsenic trioxide-treated Calu-6 lung cells is correlated with the depletion of GSH levels rather than the changes of ROS levels. J. Cell. Biochem. 104, 862-878 https://doi.org/10.1002/jcb.21673
  14. Han, Y.H., Kim, S.Z., Kim, S.H., and Park, W.H. (2008b). Intracellular GSH level is a factor in As4.1 juxtaglomerular cell death by arsenic trioxide. J. Cell. Biochem. 104, 995-1009 https://doi.org/10.1002/jcb.21685
  15. Hedley, D.W., and Chow, S. (1994). Evaluation of methods for measuring cellular glutathione content using flow cytometry. Cytometry 15, 349-358 https://doi.org/10.1002/cyto.990150411
  16. Hyun Park, W., Hee Cho, Y., Won Jung, C., Oh Park, J., Kim, K., Hyuck Im, Y., Lee, M.H., Ki Kang, W., and Park, K. (2003). Arsenic trioxide inhibits the growth of A498 renal cell carcinoma cells via cell cycle arrest or apoptosis. Biochem. Biophys. Res. Commun. 300, 230-235 https://doi.org/10.1016/S0006-291X(02)02831-0
  17. Jing, Y., Dai, J., Chalmers-Redman, R.M., Tatton, W.G., and Waxman, S. (1999). Arsenic trioxide selectively induces acute promyelocytic leukemia cell apoptosis via a hydrogen peroxidedependent pathway. Blood 94, 2102-2111
  18. Kang, Y.H., Yi, M.J., Kim, M.J., Park, M.T., Bae, S., Kang, C.M., Cho, C.K., Park, I.C., Park, M.J., Rhee, C.H.I et alK (2004). Caspase- independent cell death by arsenic trioxide in human cervical cancer cells: reactive oxygen species-mediated poly(ADPribose polymerase-1 activation signals apoptosis-inducing factor release from mitochondria. Cancer Res. 64, 8960-8967 https://doi.org/10.1158/0008-5472.CAN-04-1830
  19. Khan, N.S., Ahmad, A., and Hadi, S.M. (2000). Anti-oxidant, prooxidant properties of tannic acid and its binding to DNA. Chem. Biol. Interact. 125, 177-189 https://doi.org/10.1016/S0009-2797(00)00143-5
  20. Kim, H.R., Kim, E.J., Yang, S.H., Jeong, E.T., Park, C., Kim, S.J., Youn, M.J., So, H.S., and Park, R. (2006). Combination treatment with arsenic trioxide and sulindac augments their apoptotic potential in lung cancer cells through activation of caspase cascade and mitochondrial dysfunction. Int. J. Oncol. 28, 1401-1408
  21. Kitamura, K., Minami, Y., Yamamoto, K., Akao, Y., Kiyoi, H., Saito, H., and Naoe, T. (2000). Involvement of CD95-independent caspase 8 activation in arsenic trioxide-induced apoptosis. Leukemia 14, 1743-1750 https://doi.org/10.1038/sj.leu.2401900
  22. Kito, M., Akao, Y., Ohishi, N., Yagi, K., and Nozawa, Y. (2002). Arsenic trioxide-induced apoptosis and its enhancement by buthionine sulfoximine in hepatocellular carcinoma cell lines. Biochem. Biophys. Res. Commun. 291, 861-867 https://doi.org/10.1006/bbrc.2002.6525
  23. Lauterburg, B.H. (2002). Analgesics and glutathione. Am. J. Ther. 9, 225-233 https://doi.org/10.1097/00045391-200205000-00008
  24. Li, J.J., Tang, Q., Li, Y., Hu, B.R., Ming, Z.Y., Fu, Q., Qian, J.Q., and Xiang, J.Z. (2006). Role of oxidative stress in the apoptosis of hepatocellular carcinoma induced by combination of arsenic trioxide and ascorbic acid. Acta. Pharmacol. Sin.27, 1078-1084 https://doi.org/10.1111/j.1745-7254.2006.00345.x
  25. Li, M., Cai, J.F., and Chiu, J.F. (2002). Arsenic induces oxidative stress and activates stress gene expressions in cultured lung epithelial cells. J. Cell. Biochem. 87, 29-38 https://doi.org/10.1002/jcb.10269
  26. Macho, A., Hirsch, T., Marzo, I., Marchetti, P., Dallaporta, B., Susin, S.A., Zamzami, N., and Kroemer, G. (1997). Glutathione depletion is an early and calcium elevation is a late event of thymocyte apoptosis. J. Immunol.158, 4612-4619
  27. Maeda, H., Hori, S., Ohizumi, H., Segawa, T., Kakehi, Y., Ogawa, O., and Kakizuka, A. (2004). Effective treatment of advanced solid tumors by the combination of arsenic trioxide and Lbuthionine- sulfoximine. Cell Death Differ.11, 737-746 https://doi.org/10.1038/sj.cdd.4401389
  28. Miller, W.H., Jr., Schipper, H.M., Lee, J.S., Singer, J., and Waxman, S. (2002). Mechanisms of action of arsenic trioxide. Cancer Res. 62, 3893-3903
  29. Nakagawa, Y., Akao, Y., Morikawa, H., Hirata, I., Katsu, K., Naoe, T., Ohishi, N., and Yagi, K. (2002). Arsenic trioxide-induced apoptosis through oxidative stress in cells of colon cancer cell lines. Life Sci. 70, 2253-2269 https://doi.org/10.1016/S0024-3205(01)01545-4
  30. Oketani, M., Kohara, K., Tuvdendorj, D., Ishitsuka, K., Komorizono, Y., Ishibashi, K., and Arima, T. (2002). Inhibition by arsenic trioxide of human hepatoma cell growth. Cancer Lett. 183, 147-153 https://doi.org/10.1016/S0304-3835(01)00800-X
  31. Park, W.H., Seol, J.G., Kim, E.S., Hyun, J.M., Jung, C.W., Lee, C.C., Kim, B.K., and Lee, Y.Y. (2000). Arsenic trioxide-mediated growth inhibition in MC/CAR myeloma cells via cell cycle arrest in association with induction of cyclin-dependent kinase inhibitor, p21, and apoptosis. Cancer Res. 60, 3065-3071
  32. Park, W.H., Jung, C.W., Park, J.O., Kim, K., Kim, W.S., Im, Y.H., Lee, M.H., Kang, W.K., and Park, K. (2003). Trichostatin inhibits the growth of ACHN renal cell carcinoma cells via cell cycle arrest in association with p27, or apoptosis. Int. J. Oncol. 22, 1129-1134
  33. Poot, M., Teubert, H., Rabinovitch, P.S., and Kavanagh, T.J. (1995). De novo synthesis of glutathione is required for both entry into and progression through the cell cycle. J. Cell. Physiol. 163, 555-560 https://doi.org/10.1002/jcp.1041630316
  34. Pu, Y.S., Hour, T.C., Chen, J., Huang, C.Y., Guan, J.Y., and Lu, S.H. (2002). Cytotoxicity of arsenic trioxide to transitional carcinoma cells. Urology 60, 346-350 https://doi.org/10.1016/S0090-4295(02)01699-0
  35. Schnelldorfer, T., Gansauge, S., Gansauge, F., Schlosser, S., Beger, H.G., and Nussler, A.K. (2000). Glutathione depletion causes cell growth inhibition and enhanced apoptosis in pancreatic cancer cells. Cancer 89, 1440-1447 https://doi.org/10.1002/1097-0142(20001001)89:7<1440::AID-CNCR5>3.0.CO;2-0
  36. Scott, N., Hatlelid, K.M., MacKenzie, N.E., and Carter, D.E. (1993). Reactions of arsenic(III) and arsenic(V) species with glutathione. Chem. Res. Toxicol. 6, 102-106 https://doi.org/10.1021/tx00031a016
  37. Seol, J.G., Park, W.H., Kim, E.S., Jung, C.W., Hyun, J.M., Kim, B.K., and Lee, Y.Y. (1999). Effect of arsenic trioxide on cell cycle arrest in head and neck cancer cell line PCI-1. Biochem. Biophys. Res. Commun. 256, 400-404
  38. Shen, Z.Y., Shen, W.Y., Chen, M.H., Shen, J., and Zeng, Y. (2003). Reactive oxygen species and antioxidants in apoptosis of esophageal cancer cells induced by As2O3. Int. J. Mol. Med.11, 479-484
  39. Shim, H.Y., Park, J.H., Paik, H.D., Nah, S.Y., Kim, D.S., and Han, Y.S. (2007). Acacetin-induced apoptosis of human breast cancer MCF-7 cells involves caspase cascade, mitochondriamediated death signaling and SAPK/JNK1/2-c-Jun activation. Mol. Cells 24, 95-104
  40. Simon, H.U., Haj-Yehia, A., and Levi-Schaffer, F. (2000). Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5, 415-418 https://doi.org/10.1023/A:1009616228304
  41. Soignet, S.L., Maslak, P., Wang, Z.G., Jhanwar, S., Calleja, E., Dardashti, L.J., Corso, D., DeBlasio, A., Gabrilove, J., Scheinberg, D.A.I et al. (1998). Complete remission after treatment of acute promyelocytic leukemia with arsenic trioxide. N. Engl. J. Med. 339, 1341-1348 https://doi.org/10.1056/NEJM199811053391901
  42. Stanley, W.C., and Marzilli, M. (2003). Metabolic therapy in the treatment of ischaemic heart disease: the pharmacology of trimetazidine. Fundam. Clin. Pharmacol. 17, 133-145 https://doi.org/10.1046/j.1472-8206.2003.00154.x
  43. Tikhaze, A.K., Lankin, V.Z., Zharova, E.A., and Kolycheva, S.V. (2000). Trimetazidine as indirect antioxidant. Bull. Exp. Biol. Med. 130, 951-953
  44. Uslu, R., Sanli, U.A., Sezgin, C., Karabulut, B., Terzioglu, E., Omay, S.B., and Goker, E. (2000). Arsenic trioxide-mediated cytotoxicity and apoptosis in prostate and ovarian carcinoma cell lines. Clin. Cancer Res.6, 4957-4964
  45. Wallach-Dayan, S.B., Izbicki, G., Cohen, P.Y., Gerstl-Golan, R., Fine, A., and Breuer, R. (2006). Bleomycin initiates apoptosis of lung epithelial cells by ROS but not by Fas/FasL pathway. Am. J. Physiol. Lung Cell Mol. Physiol. 290, L790-L796 https://doi.org/10.1152/ajplung.00300.2004
  46. Wang, Z.G., Rivi, R., Delva, L., Konig, A., Scheinberg, D.A., Gambacorti- Passerini, C., Gabrilove, J.L., Warrell, R.P., Jr., and Pandolfi, P.P. (1998). Arsenic trioxide and melarsoprol induce programmed cell death in myeloid leukemia cell lines and function in a PML and PML-RARalpha independent manner. Blood 92, 1497-1504
  47. Wilcox, C.S. (2002). Reactive oxygen species: roles in blood pressure and kidney function. Curr. Hypertens Rep.4, 160-166 https://doi.org/10.1007/s11906-002-0041-2
  48. Woo, S.H., Park, I.C., Park, M.J., Lee, H.C., Lee, S.J., Chun, Y.J., Lee, S.H., Hong, S.I., and Rhee, C.H. (2002). Arsenic trioxide induces apoptosis through a reactive oxygen species-dependent pathway and loss of mitochondrial membrane potential in HeLa cells. Int. J. Oncol. 21, 57-63
  49. Wu, X.X., Ogawa, O., and Kakehi, Y. (2004). Enhancement of arsenic trioxide-induced apoptosis in renal cell carcinoma cells by L-buthionine sulfoximine. Int. J. Oncol.24, 1489-1497
  50. Yamada, J., Yoshimura, S., Yamakawa, H., Sawada, M., Nakagawa, M., Hara, S., Kaku, Y., Iwama, T., Naganawa, T., Banno, Y. et alK (2003). Cell permeable ROS scavengers, Tiron and Tempol, rescue PC12 cell death caused by pyrogallol or hypoxia/ reoxygenation. Neurosci. Res.45, 1-8 https://doi.org/10.1016/S0168-0102(02)00196-7
  51. Zhang, T.C., Cao, E.H., Li, J.F., Ma, W., and Qin, J.F. (1999). Induction of apoptosis and inhibition of human gastric cancer MGC-803 cell growth by arsenic trioxide. Eur. J. Cancer 35, 1258-1263 https://doi.org/10.1016/S0959-8049(99)00106-9
  52. Zhang, W., Ohnishi, K., Shigeno, K., Fujisawa, S., Naito, K., Nakamura, S., Takeshita, K., Takeshita, A., and Ohno, R. (1998). The induction of apoptosis and cell cycle arrest by arsenic trioxide in lymphoid neoplasms. Leukemia 12, 1383-1391 https://doi.org/10.1038/sj.leu.2401112
  53. Zorov, D.B., Juhaszova, M., and Sollott, S.J. (2006). Mitochondrial ROS-induced ROS release: An update and review. Biochem. Biophys. Acta. 1757, 509-517 https://doi.org/10.1016/j.bbabio.2006.04.029