DOI QR코드

DOI QR Code

How Extracellular Reactive Oxygen Species Reach Their Intracellular Targets in Plants

  • Jinsu Lee (Research Institute of Basic Sciences, Seoul National University) ;
  • Minsoo Han (School of Biological Sciences, Seoul National University) ;
  • Yesol Shin (School of Biological Sciences, Seoul National University) ;
  • Jung-Min Lee (School of Biological Sciences, Seoul National University) ;
  • Geon Heo (School of Biological Sciences, Seoul National University) ;
  • Yuree Lee (School of Biological Sciences, Seoul National University)
  • 투고 : 2022.10.18
  • 심사 : 2022.12.20
  • 발행 : 2023.06.30

초록

Reactive oxygen species (ROS) serve as secondary messengers that regulate various developmental and signal transduction processes, with ROS primarily generated by NADPH OXIDASEs (referred to as RESPIRATORY BURST OXIDASE HOMOLOGs [RBOHs] in plants). However, the types and locations of ROS produced by RBOHs are different from those expected to mediate intracellular signaling. RBOHs produce O2•- rather than H2O2 which is relatively long-lived and able to diffuse through membranes, and this production occurs outside the cell instead of in the cytoplasm, where signaling cascades occur. A widely accepted model explaining this discrepancy proposes that RBOH-produced extracellular O2•- is converted to H2O2 by superoxide dismutase and then imported by aquaporins to reach its cytoplasmic targets. However, this model does not explain how the specificity of ROS targeting is ensured while minimizing unnecessary damage during the bulk translocation of extracellular ROS (eROS). An increasing number of studies have provided clues about eROS action mechanisms, revealing various mechanisms for eROS perception in the apoplast, crosstalk between eROS and reactive nitrogen species, and the contribution of intracellular organelles to cytoplasmic ROS bursts. In this review, we summarize these recent advances, highlight the mechanisms underlying eROS action, and provide an overview of the routes by which eROS-induced changes reach the intracellular space.

키워드

과제정보

This work was funded by the Suh Kyungbae Foundation (SUHF-19010003) and the National Research Foundation of Korea (NRF-2021R1A5A1032428). J.L. was supported by the National Research Foundation of Korea (NRF-2020R1I1A1A01068615), and J.-M.L. was supported by the Stadelmann-Lee Scholarship Fund at Seoul National University, Korea.

참고문헌

  1. Airianah, O.B., Vreeburg, R.A., and Fry, S.C. (2016). Pectic polysaccharides are attacked by hydroxyl radicals in ripening fruit: evidence from a fluorescent fingerprinting method. Ann. Bot. 117, 441-455. https://doi.org/10.1093/aob/mcv192
  2. Alscher, R.G., Erturk, N., and Heath, L.S. (2002). Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot. 53, 1331-1341. https://doi.org/10.1093/jexbot/53.372.1331
  3. Andrews, J., Adams, S., Burton, K., and Edmondson, R. (2002). Partial purification of tomato fruit peroxidase and its effect on the mechanical properties of tomato fruit skin. J. Exp. Bot. 53, 2393-2399. https://doi.org/10.1093/jxb/erf109
  4. Apel, K. and Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55, 373-399. https://doi.org/10.1146/annurev.arplant.55.031903.141701
  5. Bacete, L., Schulz, J., Engelsdorf, T., Bartosova, Z., Vaahtera, L., Yan, G., Gerhold, J.M., Ticha, T., Ovstebo, C., Gigli-Bisceglia, N., et al. (2022). THESEUS1 modulates cell wall stiffness and abscisic acid production in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 119, e2119258119.
  6. Basu, D. and Haswell, E.S. (2020). The mechanosensitive ion channel MSL10 potentiates responses to cell swelling in Arabidopsis seedlings. Curr. Biol. 30, 2716-2728.e6. https://doi.org/10.1016/j.cub.2020.05.015
  7. Besson-Bard, A., Griveau, S., Bedioui, F., and Wendehenne, D. (2008). Real-time electrochemical detection of extracellular nitric oxide in tobacco cells exposed to cryptogein, an elicitor of defence responses. J. Exp. Bot. 59, 3407-3414. https://doi.org/10.1093/jxb/ern189
  8. Bethke, P.C., Badger, M.R., and Jones, R.L. (2004). Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell 16, 332-341. https://doi.org/10.1105/tpc.017822
  9. Bienert, G.P., Moller, A.L., Kristiansen, K.A., Schulz, A., Moller, I.M., Schjoerring, J.K., and Jahn, T.P. (2007). Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J. Biol. Chem. 282, 1183-1192. https://doi.org/10.1074/jbc.M603761200
  10. Bohm, B., Heinzelmann, S., Motz, M., and Bauer, G. (2015). Extracellular localization of catalase is associated with the transformed state of malignant cells. Biol. Chem. 396, 1339-1356. https://doi.org/10.1515/hsz-2014-0234
  11. Brandt, B., Brodsky, D.E., Xue, S., Negi, J., Iba, K., Kangasjarvi, J., Ghassemian, M., Stephan, A.B., Hu, H., and Schroeder, J.I. (2012). Reconstitution of abscisic acid activation of SLAC1 anion channel by CPK6 and OST1 kinases and branched ABI1 PP2C phosphatase action. Proc. Natl. Acad. Sci. U. S. A. 109, 10593-10598. https://doi.org/10.1073/pnas.1116590109
  12. Carmona-Rodriguez, L., Martinez-Rey, D., Mira, E., and Manes, S. (2020). SOD3 boosts T cell infiltration by normalizing the tumor endothelium and inducing laminin-α4. Oncoimmunology 9, 1794163.
  13. Chen, D., Cao, Y., Li, H., Kim, D., Ahsan, N., Thelen, J., and Stacey, G. (2017). Extracellular ATP elicits DORN1-mediated RBOHD phosphorylation to regulate stomatal aperture. Nat. Commun. 8, 2265.
  14. Chen, H., Lee, J., Lee, J.M., Han, M., Emonet, A., Lee, J., Jia, X., and Lee, Y. (2022). MSD2, an apoplastic Mn-SOD, contributes to root skotomorphogenic growth by modulating ROS distribution in Arabidopsis. Plant Sci. 317, 111192.
  15. Choi, W.G., Miller, G., Wallace, I., Harper, J., Mittler, R., and Gilroy, S. (2017). Orchestrating rapid long-distance signaling in plants with Ca(2+), ROS and electrical signals. Plant J. 90, 698-707. https://doi.org/10.1111/tpj.13492
  16. Del Rio, L.A. and Lopez-Huertas, E. (2016). ROS generation in peroxisomes and its role in cell signaling. Plant Cell Physiol. 57, 1364-1376.
  17. Demidchik, V. (2018). ROS-activated ion channels in plants: biophysical characteristics, physiological functions and molecular nature. Int. J. Mol. Sci. 19, 1263.
  18. Demidchik, V., Sokolik, A., and Yurin, V. (1997). The effect of Cu2+ on ion transport systems of the plant cell plasmalemma. Plant Physiol. 114, 1313-1325. https://doi.org/10.1104/pp.114.4.1313
  19. Demidchik, V., Sokolik, A., and Yurin, V. (2001). Characteristics of nonspecific permeability and H+-ATPase inhibition induced in the plasma membrane of Nitella flexilis by excessive Cu2+. Planta 212, 583-590. https://doi.org/10.1007/s004250000422
  20. Do, T.H.T., Choi, H., Palmgren, M., Martinoia, E., Hwang, J.U., and Lee, Y. (2019). Arabidopsis ABCG28 is required for the apical accumulation of reactive oxygen species in growing pollen tubes. Proc. Natl. Acad. Sci. U. S. A. 116, 12540-12549. https://doi.org/10.1073/pnas.1902010116
  21. Doke, N. (1985). NADPH-dependent O2- generation in membrane fractions isolated from wounded potato tubers inoculated with Phytophthora infestans. Physiol. Plant Pathol. 27, 311-322. https://doi.org/10.1016/0048-4059(85)90044-X
  22. Domingos, P., Prado, A.M., Wong, A., Gehring, C., and Feijo, J.A. (2015). Nitric oxide: a multitasked signaling gas in plants. Mol. Plant 8, 506-520. https://doi.org/10.1016/j.molp.2014.12.010
  23. Dubiella, U., Seybold, H., Durian, G., Komander, E., Lassig, R., Witte, C.P., Schulze, W.X., and Romeis, T. (2013). Calcium-dependent protein kinase/NADPH oxidase activation circuit is required for rapid defense signal propagation. Proc. Natl. Acad. Sci. U. S. A. 110, 8744-8749. https://doi.org/10.1073/pnas.1221294110
  24. Dunand, C., Crevecoeur, M., and Penel, C. (2007). Distribution of superoxide and hydrogen peroxide in Arabidopsis root and their influence on root development: possible interaction with peroxidases. New Phytol. 174, 332-341. https://doi.org/10.1111/j.1469-8137.2007.01995.x
  25. Fattman, C.L., Schaefer, L.M., and Oury, T.D. (2003). Extracellular superoxide dismutase in biology and medicine. Free Radic. Biol. Med. 35, 236-256. https://doi.org/10.1016/S0891-5849(03)00275-2
  26. Feng, W., Kita, D., Peaucelle, A., Cartwright, H.N., Doan, V., Duan, Q., Liu, M.C., Maman, J., Steinhorst, L., Schmitz-Thom, I., et al. (2018). The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca(2+) signaling. Curr. Biol. 28, 666-675.e5. https://doi.org/10.1016/j.cub.2018.01.023
  27. Fichman, Y., Miller, G., and Mittler, R. (2019). Whole-plant live imaging of reactive oxygen species. Mol. Plant 12, 1203-1210. https://doi.org/10.1016/j.molp.2019.06.003
  28. Fichman, Y. and Mittler, R. (2020). Rapid systemic signaling during abiotic and biotic stresses: is the ROS wave master of all trades? Plant J. 102, 887-896. https://doi.org/10.1111/tpj.14685
  29. Fichman, Y., Zandalinas, S.I., Peck, S., Luan, S., and Mittler, R. (2022). HPCA1 is required for systemic reactive oxygen species and calcium cell-to-cell signaling and plant acclimation to stress. Plant Cell 34, 4453-4471. https://doi.org/10.1093/plcell/koac241
  30. Fisher, A.B. (2009). Redox signaling across cell membranes. Antioxid. Redox Signal. 11, 1349-1356. https://doi.org/10.1089/ars.2008.2378
  31. Francoz, E., Ranocha, P., Nguyen-Kim, H., Jamet, E., Burlat, V., and Dunand, C. (2015). Roles of cell wall peroxidases in plant development. Phytochemistry 112, 15-21. https://doi.org/10.1016/j.phytochem.2014.07.020
  32. Fry, S.C. (1998). Oxidative scission of plant cell wall polysaccharides by ascorbate-induced hydroxyl radicals. Biochem. J. 332 (Pt 2), 507-515. https://doi.org/10.1042/bj3320507
  33. Garcia-Mata, C., Wang, J., Gajdanowicz, P., Gonzalez, W., Hills, A., Donald, N., Riedelsberger, J., Amtmann, A., Dreyer, I., and Blatt, M.R. (2010). A minimal cysteine motif required to activate the SKOR K+ channel of Arabidopsis by the reactive oxygen species H2O2*[S]. J. Biol. Chem. 285, 29286-29294. https://doi.org/10.1074/jbc.M110.141176
  34. Hawkins, B.J., Madesh, M., Kirkpatrick, C., and Fisher, A.B. (2007). Superoxide flux in endothelial cells via the chloride channel-3 mediates intracellular signaling. Mol. Biol. Cell 18, 2002-2012. https://doi.org/10.1091/mbc.e06-09-0830
  35. Huang, H., Ullah, F., Zhou, D.X., Yi, M., and Zhao, Y. (2019). Mechanisms of ROS regulation of plant development and stress responses. Front. Plant Sci. 10, 800.
  36. Iwai, S., Ogata, S., Yamada, N., Onjo, M., Sonoike, K., and Shimazaki, K. (2019). Guard cell photosynthesis is crucial in abscisic acid-induced stomatal closure. Plant Direct 3, e00137.
  37. Kadota, Y., Sklenar, J., Derbyshire, P., Stransfeld, L., Asai, S., Ntoukakis, V., Jones, J.D., Shirasu, K., Menke, F., Jones, A., et al. (2014). Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity. Mol. Cell 54, 43-55. https://doi.org/10.1016/j.molcel.2014.02.021
  38. Kaman-Toth, E., Danko, T., Gullner, G., Bozso, Z., Palkovics, L., and Pogany, M. (2019). Contribution of cell wall peroxidase- and NADPH oxidase-derived reactive oxygen species to Alternaria brassicicola-induced oxidative burst in Arabidopsis. Mol. Plant Pathol. 20, 485-499. https://doi.org/10.1111/mpp.12769
  39. Kobayashi, M., Ohura, I., Kawakita, K., Yokota, N., Fujiwara, M., Shimamoto, K., Doke, N., and Yoshioka, H. (2007). Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. Plant Cell 19, 1065-1080. https://doi.org/10.1105/tpc.106.048884
  40. Koo, J.C., Lee, I.C., Dai, C., Lee, Y., Cho, H.K., Kim, Y., Phee, B.K., Kim, H., Lee, I.H., Choi, S.H., et al. (2017). The protein trio RPK1-CaM4-RbohF mediates transient superoxide production to trigger age-dependent cell death in Arabidopsis. Cell Rep. 21, 3373-3380. https://doi.org/10.1016/j.celrep.2017.11.077
  41. Kumar, G., Iyer, S., and Knowles, N.R. (2007). Strboh A homologue of NADPH oxidase regulates wound-induced oxidative burst and facilitates wound-healing in potato tubers. Planta 227, 25-36. https://doi.org/10.1007/s00425-007-0589-9
  42. Kwak, J.M., Mori, I.C., Pei, Z.M., Leonhardt, N., Torres, M.A., Dangl, J.L., Bloom, R.E., Bodde, S., Jones, J.D., and Schroeder, J.I. (2003). NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J. 22, 2623-2633. https://doi.org/10.1093/emboj/cdg277
  43. Laohavisit, A., Wakatake, T., Ishihama, N., Mulvey, H., Takizawa, K., Suzuki, T., and Shirasu, K. (2020). Quinone perception in plants via leucine-rich-repeat receptor-like kinases. Nature 587, 92-97. https://doi.org/10.1038/s41586-020-2655-4
  44. Lee, D., Lal, N.K., Lin, Z.D., Ma, S., Liu, J., Castro, B., Toruno, T., Dinesh-Kumar, S.P., and Coaker, G. (2020). Regulation of reactive oxygen species during plant immunity through phosphorylation and ubiquitination of RBOHD. Nat. Commun. 11, 1838.
  45. Lee, J., Chen, H., Lee, G., Emonet, A., Kim, S.G., Shim, D., and Lee, Y. (2022). MSD2-mediated ROS metabolism fine-tunes the timing of floral organ abscission in Arabidopsis. New Phytol. 235, 2466-2480. https://doi.org/10.1111/nph.18303
  46. Lee, S.C., Lan, W., Buchanan, B.B., and Luan, S. (2009). A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells. Proc. Natl. Acad. Sci. U. S. A. 106, 21419-21424. https://doi.org/10.1073/pnas.0910601106
  47. Lee, Y., Rubio, M.C., Alassimone, J., and Geldner, N. (2013). A mechanism for localized lignin deposition in the endodermis. Cell 153, 402-412. https://doi.org/10.1016/j.cell.2013.02.045
  48. Lee, Y., Yoon, T.H., Lee, J., Jeon, S.Y., Lee, J.H., Lee, M.K., Chen, H., Yun, J., Oh, S.Y., and Wen, X. (2018). A lignin molecular brace controls precision processing of cell walls critical for surface integrity in Arabidopsis. Cell 173, 1468-1480.e9. https://doi.org/10.1016/j.cell.2018.03.060
  49. Li, L., Li, M., Yu, L., Zhou, Z., Liang, X., Liu, Z., Cai, G., Gao, L., Zhang, X., Wang, Y., et al. (2014). The FLS2-associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity. Cell Host Microbe 15, 329-338. https://doi.org/10.1016/j.chom.2014.02.009
  50. Lin, W., Tang, W., Pan, X., Huang, A., Gao, X., Anderson, C.T., and Yang, Z. (2022). Arabidopsis pavement cell morphogenesis requires FERONIA binding to pectin for activation of ROP GTPase signaling. Curr. Biol. 32, 497-507.e4. https://doi.org/10.1016/j.cub.2021.11.030
  51. Liu, Y., Ren, D., Pike, S., Pallardy, S., Gassmann, W., and Zhang, S. (2007). Chloroplast-generated reactive oxygen species are involved in hypersensitive response-like cell death mediated by a mitogen-activated protein kinase cascade. Plant J. 51, 941-954. https://doi.org/10.1111/j.1365-313X.2007.03191.x
  52. Miller, A.F. (2012). Superoxide dismutases: ancient enzymes and new insights. FEBS Lett. 586, 585-595. https://doi.org/10.1016/j.febslet.2011.10.048
  53. Miller, E.W., Dickinson, B.C., and Chang, C.J. (2010). Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling. Proc. Natl. Acad. Sci. U. S. A. 107, 15681-15686. https://doi.org/10.1073/pnas.1005776107
  54. Miller, G., Schlauch, K., Tam, R., Cortes, D., Torres, M.A., Shulaev, V., Dangl, J.L., and Mittler, R. (2009). The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Sci. Signal. 2, ra45.
  55. Mira, E., Carmona-Rodriguez, L., Perez-Villamil, B., Casas, J., Fernandez-Acenero, M.J., Martinez-Rey, D., Martin-Gonzalez, P., Heras-Murillo, I., Paz-Cabezas, M., and Tardaguila, M. (2018). SOD3 improves the tumor response to chemotherapy by stabilizing endothelial HIF-2α. Nat. Commun. 9, 575.
  56. Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7, 405-410. https://doi.org/10.1016/S1360-1385(02)02312-9
  57. Mittler, R., Vanderauwera, S., Suzuki, N., Miller, G., Tognetti, V.B., Vandepoele, K., Gollery, M., Shulaev, V., and Van Breusegem, F. (2011). ROS signaling: the new wave? Trends Plant Sci. 16, 300-309. https://doi.org/10.1016/j.tplants.2011.03.007
  58. Mittler, R., Zandalinas, S.I., Fichman, Y., and Van Breusegem, F. (2022). Reactive oxygen species signalling in plant stress responses. Nat. Rev. Mol. Cell Biol. 23, 663-679. https://doi.org/10.1038/s41580-022-00499-2
  59. Moller, M.N., Rios, N., Trujillo, M., Radi, R., Denicola, A., and Alvarez, B. (2019). Detection and quantification of nitric oxide-derived oxidants in biological systems. J. Biol. Chem. 294, 14776-14802. https://doi.org/10.1074/jbc.REV119.006136
  60. Morillo, S.A. and Tax, F.E. (2006). Functional analysis of receptor-like kinases in monocots and dicots. Curr. Opin. Plant Biol. 9, 460-469. https://doi.org/10.1016/j.pbi.2006.07.009
  61. Movahed, N., Pastore, C., Cellini, A., Allegro, G., Valentini, G., Zenoni, S., Cavallini, E., D'Inca, E., Tornielli, G.B., and Filippetti, I. (2016). The grapevine VviPrx31 peroxidase as a candidate gene involved in anthocyanin degradation in ripening berries under high temperature. J. Plant Res. 129, 513-526. https://doi.org/10.1007/s10265-016-0786-3
  62. Mubarakshina, M.M., Ivanov, B.N., Naydov, I.A., Hillier, W., Badger, M.R., and Krieger-Liszkay, A. (2010). Production and diffusion of chloroplastic H2O2 and its implication to signalling. J. Exp. Bot. 61, 3577-3587. https://doi.org/10.1093/jxb/erq171
  63. Muller, K., Linkies, A., Vreeburg, R.A.M., Fry, S.C., Krieger-Liszkay, A., and Leubner-Metzger, G. (2009). In vivo cell wall loosening by hydroxyl radicals during cress seed germination and elongation growth. Plant Physiol. 150, 1855-1865. https://doi.org/10.1104/pp.109.139204
  64. Murphy, M.P., Bayir, H., Belousov, V., Chang, C.J., Davies, K.J.A., Davies, M.J., Dick, T.P., Finkel, T., Forman, H.J., Janssen-Heininger, Y., et al. (2022). Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo. Nat. Metab. 4, 651-662. https://doi.org/10.1038/s42255-022-00591-z
  65. Nestler, J., Liu, S., Wen, T.J., Paschold, A., Marcon, C., Tang, H.M., Li, D., Li, L., Meeley, R.B., and Sakai, H. (2014). Roothairless5, which functions in maize (Zea mays L.) root hair initiation and elongation encodes a monocot-specific NADPH oxidase. Plant J. 79, 729-740. https://doi.org/10.1111/tpj.12578
  66. Ogasawara, Y., Kaya, H., Hiraoka, G., Yumoto, F., Kimura, S., Kadota, Y., Hishinuma, H., Senzaki, E., Yamagoe, S., Nagata, K., et al. (2008). Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation. J. Biol. Chem. 283, 8885-8892. https://doi.org/10.1074/jbc.M708106200
  67. Pacheco, J.M., Ranocha, P., Kasulin, L., Fusari, C.M., Servi, L., Aptekmann, A.A., Gabarain, V.B., Peralta, J.M., Borassi, C., Marzol, E., et al. (2022). Apoplastic class III peroxidases PRX62 and PRX69 promote Arabidopsis root hair growth at low temperature. Nat. Commun. 13, 1310.
  68. Pacher, P., Beckman, J.S., and Liaudet, L. (2007). Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 87, 315-424. https://doi.org/10.1152/physrev.00029.2006
  69. Palmieri, M.C., Sell, S., Huang, X., Scherf, M., Werner, T., Durner, J., and Lindermayr, C. (2008). Nitric oxide-responsive genes and promoters in Arabidopsis thaliana: a bioinformatics approach. J. Exp. Bot. 59, 177-186. https://doi.org/10.1093/jxb/erm345
  70. Passardi, F., Longet, D., Penel, C., and Dunand, C. (2004a). The class III peroxidase multigenic in land plants family in rice and its evolution. Phytochemistry 65, 1879-1893. https://doi.org/10.1016/j.phytochem.2004.06.023
  71. Passardi, F., Penel, C., and Dunand, C. (2004b). Performing the paradoxical: how plant peroxidases modify the cell wall. Trends Plant Sci. 9, 534-540. https://doi.org/10.1016/j.tplants.2004.09.002
  72. Petushkova, A.I. and Zamyatnin, A.A. (2020). Redox-mediated post-translational modifications of proteolytic enzymes and their role in protease functioning. Biomolecules 10, 650.
  73. Radin, I., Richardson, R.A., Coomey, J.H., Weiner, E.R., Bascom, C.S., Li, T., Bezanilla, M., and Haswell, E.S. (2021). Plant PIEZO homologs modulate vacuole morphology during tip growth. Science 373, 586-590. https://doi.org/10.1126/science.abe6310
  74. Safavi-Rizi, V., Herde, M., and Stohr, C. (2020). Identification of nitric oxide (NO)-responsive genes under hypoxia in tomato (Solanum lycopersicum L.) root. Sci. Rep. 10, 16509.
  75. Sagi, M., Davydov, O., Orazova, S., Yesbergenova, Z., Ophir, R., Stratmann, J.W., and Fluhr, R. (2004). Plant respiratory burst oxidase homologs impinge on wound responsiveness and development in Lycopersicon esculentum. Plant Cell 16, 616-628. https://doi.org/10.1105/tpc.019398
  76. Scheel, D. and Wasternack, C. (2002). The role of reactive oxygen species in signal transduction. In Plant Signal Transduction (New York: Oxford University Press), pp. 41-73.
  77. Schopfer, P. (1996). Hydrogen peroxide-mediated cell-wall stiffening in vitro in maize coleoptiles. Planta 199, 43-49. https://doi.org/10.1007/BF00196879
  78. Shen, J., Zhang, J., Zhou, M., Zhou, H., Cui, B., Gotor, C., Romero, L.C., Fu, L., Yang, J., Foyer, C.H., et al. (2020). Persulfidation-based modification of cysteine desulfhydrase and the NADPH oxidase RBOHD controls guard cell abscisic acid signaling. Plant Cell 32, 1000-1017. https://doi.org/10.1105/tpc.19.00826
  79. Shi, W., Wang, L., Yao, L., Hao, W., Han, C., Fan, M., Wang, W., and Bai, M.Y. (2022). Spatially patterned hydrogen peroxide orchestrates stomatal development in Arabidopsis. Nat. Commun. 13, 5040.
  80. Shigeto, J. and Tsutsumi, Y. (2016). Diverse functions and reactions of class III peroxidases. New Phytol. 209, 1395-1402. https://doi.org/10.1111/nph.13738
  81. Silveira, N.M., Hancock, J.T., Frungillo, L., Siasou, E., Marcos, F.C., Salgado, I., Machado, E.C., and Ribeiro, R.V. (2017). Evidence towards the involvement of nitric oxide in drought tolerance of sugarcane. Plant Physiol. Biochem. 115, 354-359. https://doi.org/10.1016/j.plaphy.2017.04.011
  82. Sirichandra, C., Gu, D., Hu, H.C., Davanture, M., Lee, S., Djaoui, M., Valot, B., Zivy, M., Leung, J., Merlot, S., et al. (2009). Phosphorylation of the Arabidopsis AtrbohF NADPH oxidase by OST1 protein kinase. FEBS Lett. 583, 2982-2986. https://doi.org/10.1016/j.febslet.2009.08.033
  83. StoEhr, C. and Ullrich, W.R. (2002). Generation and possible roles of NO in plant roots and their apoplastic space. J. Exp. Bot. 53, 2293-2303. https://doi.org/10.1093/jxb/erf110
  84. Stohr, C. and Stremlau, S. (2006). Formation and possible roles of nitric oxide in plant roots. J. Exp. Bot. 57, 463-470. https://doi.org/10.1093/jxb/erj058
  85. Takabe, K., Takeuchi, M., Sato, T., Ito, M., and Fujita, M. (2001). Immunocytochemical localization of enzymes involved in lignification of the cell wall. J. Plant Res. 114, 509-515. https://doi.org/10.1007/PL00014018
  86. Torres, M.A., Dangl, J.L., and Jones, J.D. (2002). Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc. Natl. Acad. Sci. U. S. A. 99, 517-522. https://doi.org/10.1073/pnas.012452499
  87. Tsukagoshi, H., Busch, W., and Benfey, P.N. (2010). Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell 143, 606-616. https://doi.org/10.1016/j.cell.2010.10.020
  88. Turkan, I. (2017). Emerging roles for ROS and RNS - versatile molecules in plants. J. Exp. Bot. 68, 4413-4416. https://doi.org/10.1093/jxb/erx236
  89. Vaahtera, L., Schulz, J., and Hamann, T. (2019). Cell wall integrity maintenance during plant development and interaction with the environment. Nat. Plants 5, 924-932. https://doi.org/10.1038/s41477-019-0502-0
  90. Valerio, L., De Meyer, M., Penel, C., and Dunand, C. (2004). Expression analysis of the Arabidopsis peroxidase multigenic family. Phytochemistry 65, 1331-1342. https://doi.org/10.1016/j.phytochem.2004.04.017
  91. Waszczak, C., Carmody, M., and Kangasjarvi, J. (2018). Reactive oxygen species in plant signaling. Annu. Rev. Plant Biol. 69, 209-236. https://doi.org/10.1146/annurev-arplant-042817-040322
  92. Wrzaczek, M., Brosche, M., Salojarvi, J., Kangasjarvi, S., Idanheimo, N., Mersmann, S., Robatzek, S., Karpinski, S., Karpinska, B., and Kangasjarvi, J. (2010). Transcriptional regulation of the CRK/DUF26 group of receptor-like protein kinases by ozone and plant hormones in Arabidopsis. BMC Plant Biol. 10, 95.
  93. Wu, F., Chi, Y., Jiang, Z., Xu, Y., Xie, L., Huang, F., Wan, D., Ni, J., Yuan, F., and Wu, X. (2020). Hydrogen peroxide sensor HPCA1 is an LRR receptor kinase in Arabidopsis. Nature 578, 577-581. https://doi.org/10.1038/s41586-020-2032-3
  94. Yamada, M., Han, X., and Benfey, P.N. (2020). RGF1 controls root meristem size through ROS signalling. Nature 577, 85-88. https://doi.org/10.1038/s41586-019-1819-6
  95. Yoboue, E.D., Sitia, R., and Simmen, T. (2018). Redox crosstalk at endoplasmic reticulum (ER) membrane contact sites (MCS) uses toxic waste to deliver messages. Cell Death Dis. 9, 331.
  96. Yoshie, Y., Goto, K., Takai, R., Iwano, M., Takayama, S., Isogai, A., and Che, F.S. (2005). Function of the rice gp91phox homologs OsrbohA and OsrbohE genes in ROS-dependent plant immune responses. Plant Biotechnol. (Tokyo) 22, 127-135. https://doi.org/10.5511/plantbiotechnology.22.127
  97. Yu, Z., Jia, D.Y., and Liu, T.B. (2019). Polyamine oxidases play various roles in plant development and abiotic stress tolerance. Plants (Basel) 8, 184.
  98. Yun, B.W., Feechan, A., Yin, M., Saidi, N.B., Le Bihan, T., Yu, M., Moore, J.W., Kang, J.G., Kwon, E., Spoel, S.H., et al. (2011). S-nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature 478, 264-268. https://doi.org/10.1038/nature10427
  99. Zechmann, B. and Muller, M. (2010). Subcellular compartmentation of glutathione in dicotyledonous plants. Protoplasma 246, 15-24. https://doi.org/10.1007/s00709-010-0111-2
  100. Zeng, J., Dong, Z., Wu, H., Tian, Z., and Zhao, Z. (2017). Redox regulation of plant stem cell fate. EMBO J. 36, 2844-2855. https://doi.org/10.15252/embj.201695955
  101. Zhao, L., Phuong, L.T., Luan, M.T., Fitrianti, A.N., Matsui, H., Nakagami, H., Noutoshi, Y., Yamamoto, M., Ichinose, Y., Shiraishi, T., et al. (2019). A class III peroxidase PRX34 is a component of disease resistance in Arabidopsis. J. Gen. Plant Pathol. 85, 405-412. https://doi.org/10.1007/s10327-019-00863-9
  102. Zorov, D.B., Juhaszova, M., and Sollott, S.J. (2006). Mitochondrial ROSinduced ROS release: an update and review. Biochim. Biophys. Acta 1757, 509-517. https://doi.org/10.1016/j.bbabio.2006.04.029