• Title/Summary/Keyword: Intra-fraction

Search Result 49, Processing Time 0.02 seconds

An investigation Of IntraFraction Motion Correction For Lung Stereotactic Body Radiation Therapy By Using IntraFraction Cone Beam Computed Tomography (폐암 환자의 정위적 체부 방사선 치료 시 IntraFraction CBCT를 이용한 치료 중 자세 오차 교정에 대한 고찰)

  • Song, Hyeong Seok;Cho, Kang Chul;Park, Hyo Kuk;Yoon, Jong Won;Cho, Jung Hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.1
    • /
    • pp.67-74
    • /
    • 2019
  • Purpose: The purpose is to correct for position errors caused by long treatment times. By correcting the target motion that can occur during lung SBRT using IntraFraction CBCT. Methods and materials: We analyzed retrospectively the IFM data of 14 patients with two treatment arc in the treatment plan for lung cancer with stereotactic radiotherapy. An IntraFraction Motion was applied to the Arccheck phantom to acquire the Gamma index data. Results : IntraFraction Motion during the first treatment arc is in the left-right(LR), superiorinferior(SI), anterior-posterior(AP) directions were $0.16{\pm}0.05cm$, 0.72 cm(max error), $0.2{\pm}0.14cm$, 1.26 cm, $0.24{\pm}0.08cm$, 0.82 cm and rotational directions was $0.84{\pm}0.23^{\circ}$, $2.8^{\circ}$(pitch), $0.72{\pm}0.23^{\circ}$, $2.5^{\circ}$(yaw), $0.7{\pm}0.19^{\circ}$, $2^{\circ}$(roll). IntraFraction Motion during the second treatment arc is in the LR, SI, AP directions were $0.1{\pm}0.04cm$, 0.37 cm, $0.14{\pm}0.17cm$, 2 cm, $0.12{\pm}0.04cm$, 0.5 cm and rotational directions was $0.45{\pm}0.12^{\circ}$, $1.3^{\circ}$, $0.37{\pm}0.1^{\circ}$, $1^{\circ}$, $0.35{\pm}0.1^{\circ}$, $1.2^{\circ}$. Gamma index pass rates were $82.64{\pm}10.51%$, 48.4 %. Conclusions : In this study, we examined the validity of IntraFraction Motion correction in lung SBRT and the efficiency of IntraFraction CBCT. Due to the nature of SBRT treatment, IFM may increase due to the increased treatment time. It is believed that the increase in IFM with the increase in treatment time can be improved with the use of FFF Beam and additional position correction using CBCT during treatment.

Analysis of inter-fraction and intra-fraction errors during volumetric modulated arc therapy in Pancreas Ca (호흡 동조 췌장 암 용적 세기조절 회전 치료 시 Inter-fraction Intra-fraction 분석)

  • Jo, Young Pil;Seo, Dong Rin;Hong, Taek Kyun;Kang, Tae Yeong;Beck, Geum Mun;Hong, Dong Ki;Yun, In Ha;Kim, Jin San
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.247-256
    • /
    • 2014
  • Purpose : To assess target motion during radiotherapy by quantifying daily setup errors and inter-fractional and intra-fractional movements of pancreatic fiducials. Materials and Methods : Eleven patients were treated via stereotactic body radiotherapy (SBRT) with volumetric modulated arc therapy. Bony setup errors were calculated using cone beam computed tomography (CBCT). Inter-fractional and intrafractional fiducial (seed) motion was determined via cone beam computed tomography (CBCT) projections and orthogonal fluoroscopy. Results : Using an off-line correction protocol, setup errors were 0.0 (-1.7-4.0), 0.3 (-0.5-3.0), and 0.0 (-4.1-6.6) mm for the left-right, anterior-posterior, and superior-inferior directions respectively. Random inter-fractional setup errors in the mean fiducial positions were -0.1, -1.1, and -2.3 mm respectively. Intra-fractional fiducial margins were 9.9, 7.8, and 12.5 mm, respectively. Conclusion : Online inter-fractional and intra-fractional corrections based on daily kV images and CBCT expedites SBRT of pancreatic cancer. Importantly, inter-fractional and intra-fractional motion needs to be measured regularly during treatment of pancreatic cancer to account for variations in patient respiration.

Purification and Characterization of Intracellular and Extracellular Inulase from Kluyveromyces marxianus (Kluyveromyces marxianus 가 생산하는 Intracellular 및 Extracellular Inulase 의 정제 및 특성비교)

  • Kim, Su-Il;Moon, Hang-Sik
    • Applied Biological Chemistry
    • /
    • v.30 no.2
    • /
    • pp.169-178
    • /
    • 1987
  • The extracellular and intracellular inulases from Kluyveromyces marxianus were purified and characterized. The maximum production of both inulases was achieved at stationary phase in a pH-controlled medium at pH 5 with yeast nitrogen base as organic nitrogen source. Each enzyme was concentrated by tannic acid precipitation and separated into two fractions by DEAF-cellulose chromatography. Electrophoretic analysis showed that the four fractions had three glycoprotein bards each. Only main glycoprotein band, however, had both inulase and invertase activities. There were no significant differences between two enzymes in the optimum pH and temperature. But the intracellular inulases had higher heat stability and less affinity toward inulin than the extracellular enzymes do. All the purified enzymes were considered to be exo-inulases using hydrolyzate analysis with TLC.

  • PDF

An Analysis of Intra-Fractional Movement during Image-Guided Frameless Radiosurgery for Brain Tumor Using CyberKnife (사이버나이프를 이용한 무고정틀 두개 방사선 수술 중 발생한 환자의 치료 중 움직임 분석)

  • Kang, Ki Mun;Chai, Gyu Young;Jeong, Bae Gwon;Ha, In-Bong;Park, Kyung Bum;Jung, Jin-Myung;Lim, Young Kyung;Jeong, Hojin
    • Progress in Medical Physics
    • /
    • v.23 no.3
    • /
    • pp.169-176
    • /
    • 2012
  • Frameless method in brain radiosurgery has advantages relative to rigid head-frame method in terms of patient friendly and flexible application of multi-fractionation. However, it has also disadvantages and the most negative point is that it cannot control the patient motion during treatment as lowly as the level of the frame-based radiosurgery, which could affect to the treatment accuracy. In the present study, we analyzed the geometric uncertainty of the intra-fraction motion using the actual treatment records of 294-CyberKnife treatments for brain tumors. Based on the analysis, we statistically presented the magnitude of intra-fraction motion in frameless radiosurgy. The result could provide the quantitative information to determine the adequate treatment margins to compensate the intra-fraction movements.

Assessment of inter- and intra-fractional volume of bladder and body contour by mega-voltage computed tomography in helical tomotherapy for pelvic malignancy

  • Kim, Sunghyun;You, Sei Hwan;Eum, Young Ju
    • Radiation Oncology Journal
    • /
    • v.36 no.3
    • /
    • pp.235-240
    • /
    • 2018
  • Purpose: We describe the daily bladder volume change observed by mega-voltage computed tomography (MVCT) during pelvic radiotherapy with potential predictors of increased bladder volume variations. Materials and Methods: For 41 patients who received pelvic area irradiation, the volumes of bladder and pelvic body contour were measured twice a day with pre- and post-irradiation MVCT from the 1st to the 10th fraction. The median prescription dose was 20 Gy (range, 18 to 30 Gy) up to a 10th fraction. The upper and lower margin of MVCT scanning was consistent during the daily treatments. The median age was 69 years (range, 33 to 86 years) and 10 patients (24.4%) were treated postoperatively. Results: Overall bladder volume on planning computed tomography was 139.7 ± 92.8 mL. Generally, post-irradiation bladder volume (POSTBV) was larger than pre-irradiation bladder volume (PREBV) (p < 0.001). The mean PREBV and POSTBV was reduced after 10 fraction treatments by 21.3% (p = 0.028) and 25.4% (p = 0.007), respectively. The MVCT-scanned body contour volumes had a tendency to decrease as the treatment sessions progressed (p = 0.043 at the 8th fraction and p = 0.044 at the 10th fraction). There was a statistically significant correlation between bladder filling time and PREBV (p = 0.001). Conclusion: Daily MVCT-based bladder volume assessment was feasible both intra- and inter-fractionally.

INTRA-NIGHT OPTICAL VARIABILITY OF ACTIVE GALACTIC NUCLEI IN THE COSMOS FIELD WITH THE KMTNET

  • Kim, Joonho;Karouzos, Marios;Im, Myungshin;Choi, Changsu;Kim, Dohyeong;Jun, Hyunsung D.;Lee, Joon Hyeop;Mezcua, Mar
    • Journal of The Korean Astronomical Society
    • /
    • v.51 no.4
    • /
    • pp.89-110
    • /
    • 2018
  • Active Galactic Nucleus (AGN) variability can be used to study the physics of the region in the vicinity of the central black hole. In this paper, we investigated intra-night optical variability of AGN in the COSMOS field in order to understand the AGN instability at the smallest scale. Observations were performed using the KMTNet on three separate nights for 2.5 to 5 hours at a cadence of 20 to 30 min. We find that the observation enables the detection of short-term variability as small as ~ 0.02 and 0.1 mag for R ~ 18 and 20 mag sources, respectively. Using four selection methods (X-rays, mid-infrared, radio, and matching with SDSS quasars), 394 AGN are detected in the $4deg^2$ field of view. After differential photometry and ${\chi}^2$-test, we classify intra-night variable AGN. The fraction of variable AGN (0-8%) is statistically consistent with a null result. Eight out of 394 AGN are found to be intra-night variable in two filters or two nights with a variability level of 0.1 mag, suggesting that they are strong candidates for intra-night variable AGN. Still they represent a small population (2%). There is no sub-category of AGN that shows a statistically significant intra-night variability.

Effect of Ailanthi Radicis Cortex Extracts on Melanogenesis

  • Cho, Young-Ho
    • Biomedical Science Letters
    • /
    • v.13 no.4
    • /
    • pp.313-317
    • /
    • 2007
  • Melanogenesis refers to the biosynthesis of melanin pigment in melanocytes. Melanogenesis is controlled by the intra- and extracellular environments. In the present study, to develop a new whitening agent, it was investigated the antioxidant activity and the inhibitory effect of Ailanthi Radicis Cortex extract on tyrosinase activity and on melanogenesis in the B16/F1 melanoma cells. The inhibition ratio of tyrosinase activity of ethylacetate fraction from Ailanthi Radicis Cortex was higher than that of arbutin. The ethylacetate fraction showed scavenging activities of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and superoxide anion radicals in a dose dependent manner. The highest inhibitory activity of melanogenesis was also in ethylacetate fraction ($40.0{\pm}5%$ at the concentration of $400{\mu}g/ml$). This study demonstrates that the Ailanthi Radicis Cortex extract might be used to be a potential agent for skin whitening.

  • PDF

4-Dimensional Imaging and Planning (4차원 영상 및 치료계획)

  • Jo, Byeong-Cheol;Park, Hui-Cheol;Kim, Su-San;O, Do-Hun;Bae, Hun-Sik
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2005.04a
    • /
    • pp.11-15
    • /
    • 2005
  • 입체조형 및 세기조절 방사선치료가 보편화되어 가고 있는 현 시점에서, 치료율을 높이기 위해 종양처방선량은 증가시키는 반면 부작용은 최소화하고자 하는 요구가 증가하고 있다. 셋업오차 및 체내운동(internal motion)은 이러한 요구를 충족시키는데 대한 한계로 작용하고 있다. 4차원방사선치료(4-dimensional radiation therapy)는 체내운동을 최소화시키거나 또는 움직임을 추적하여 방사선치료를 시행함으로써 “종양선량최대화/정상조직선량최소화”라는 고정밀방사선치료의 요구에 부응할 수 있는 치료기술로 기대를 모으고 있다. 체내운동은 호흡에 의한 움직임과 같이 단기적으로 발생되는 조사분할내(intra-fraction)와 종양의 수축, 체중 변화 등과 같이 장기적으로 발생하는 조사분할간(inter-fraction)움직임으로 구분되는데, 본 연제에서는 주로 조사분할내 움직임, 즉 호흡에 의한 움직임에 대처하는 4차원방사선치료를 위한 동적영상 획득 및 방사선치료계획과정에 초점을 맞추어 소개하고자 한다.

  • PDF

Development of Geometrical Quality Control Real-time Analysis Program using an Electronic Portal Imaging (전자포탈영상을 이용한 기하학적 정도관리 실시간 분석 프로그램의 개발)

  • Lee, Sang-Rok;Jung, Kyung-Yong;Jang, Min-Sun;Lee, Byung-Gu;Kwon, Young-Ho
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.2
    • /
    • pp.77-84
    • /
    • 2012
  • Purpose: To develop a geometrical quality control real-time analysis program using an electronic portal imaging to replace film evaluation method. Materials and Methods: A geometrical quality control item was established with the Eclipse treatment planning system (Version 8.1, Varian, USA) after the Electronic Portal Imaging Device (EPID) took care of the problems occurring from the fixed substructure of the linear accelerator (CL-iX, Varian, USA). Electronic portal image (single exposure before plan) was created at the treatment room's 4DTC (Version 10.2, Varian, USA) and a beam was irradiated in accordance with each item. The gaining the entire electronic portal imaging at the Off-line review and was evaluated by a self-developed geometrical quality control real-time analysis program. As for evaluation methods, the intra-fraction error was analyzed by executing 5 times in a row under identical conditions and procedures on the same day, and in order to confirm the infer-fraction error, it was executed for 10 days under identical conditions of all procedures and was compared with the film evaluation method using an Iso-align$^{TM}$ quality control device. Measurement and analysis time was measured by sorting the time into from the device setup to data achievement and the time amount after the time until the completion of analysis and the convenience of the users and execution processes were compared. Results: The intra-fraction error values for each average 0.1, 0.2, 0.3, 0.2 mm at light-radiation field coincidence, collimator rotation axis, couch rotation axis and gantry rotation axis. By checking the infer-fraction error through 10 days of continuous quality control, the error values obtained were average 1.7, 1.4, 0.7, 1.1 mm for each item. Also, the measurement times were average 36 minutes, 15 minutes for the film evaluation method and electronic portal imaging system, and the analysis times were average 30 minutes, 22 minutes. Conclusion: When conducting a geometrical quality control using an electronic portal imaging, it was found that it is efficient as a quality control tool. It not only reduces costs through not using films, but also reduces the measurement and analysis time which enhances user convenience and can improve the execution process by leaving out film developing procedures etc. Also, images done with evaluation from the self-developed geometrical quality control real-time analysis program, data processing is capable which supports the storage of information.

  • PDF

Effect of Ge mole fraction and Strained Si Thickness on Electron Mobility of FD n-MOSFET Fabricated on Strained Si/Relaxed SiGe/SiO2/Si (Strained Si/Relaxed SiGe/SiO2/Si 구조 FD n-MOSFET의 전자이동에 Ge mole fraction과 strained Si 층 두께가 미치는 영향)

  • 백승혁;심태헌;문준석;차원준;박재근
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.10
    • /
    • pp.1-7
    • /
    • 2004
  • In order to enhance the electron mobility in SOI n-MOSFET, we fabricated fully depletion(FD) n-MOSFET on the strained Si/relaxed SiGa/SiO$_2$/Si structure(strained Si/SGOI) formed by inserting SiGe layer between a buried oxide(BOX) layer and a top silicon layer. The summated thickness of the strained Si and relaxed SiGe was fixed by 12.8 nm and then the dependency of electron mobility on strained Si thickness was investigated. The electron mobility in the FD n-MOSFET fabricated on the strained Si/SGOI enhanced about 30-80% compared to the FD n-MOSFET fabricated on conventional SOI. However, the electron mobility decreased with the strained Si thickness although the inter-valley phonon scattering was reduced via the enhancement of the Ge mole fraction. This result is attributed to the increment of intra-valley phonon scattering in the n-channel 2-fold valley via the further electron confinement as the strained Si thickness was reduced.