An Analysis of Intra-Fractional Movement during Image-Guided Frameless Radiosurgery for Brain Tumor Using CyberKnife

사이버나이프를 이용한 무고정틀 두개 방사선 수술 중 발생한 환자의 치료 중 움직임 분석

  • Kang, Ki Mun (Department of Radiation Oncology, School of Medicine, Gyeongsang National University) ;
  • Chai, Gyu Young (Department of Radiation Oncology, School of Medicine, Gyeongsang National University) ;
  • Jeong, Bae Gwon (Department of Radiation Oncology, School of Medicine, Gyeongsang National University) ;
  • Ha, In-Bong (Department of Radiation Oncology, School of Medicine, Gyeongsang National University) ;
  • Park, Kyung Bum (Department of Neurosurgery, School of Medicine, Gyeongsang National University) ;
  • Jung, Jin-Myung (Department of Neurosurgery, School of Medicine, Gyeongsang National University) ;
  • Lim, Young Kyung (Proton Therapy Center, National Cancer Center) ;
  • Jeong, Hojin (Department of Radiation Oncology, School of Medicine, Gyeongsang National University)
  • 강기문 (경상대학교 의학전문대학원 방사선종양학교실) ;
  • 채규영 (경상대학교 의학전문대학원 방사선종양학교실) ;
  • 정배권 (경상대학교 의학전문대학원 방사선종양학교실) ;
  • 하인봉 (경상대학교 의학전문대학원 방사선종양학교실) ;
  • 박경범 (경상대학교 의학전문대학원 신경외과학교실) ;
  • 정진명 (경상대학교 의학전문대학원 신경외과학교실) ;
  • 임영경 (국립암센터 양성자치료센터) ;
  • 정호진 (경상대학교 의학전문대학원 방사선종양학교실)
  • Received : 2012.06.08
  • Accepted : 2012.08.30
  • Published : 2012.09.30

Abstract

Frameless method in brain radiosurgery has advantages relative to rigid head-frame method in terms of patient friendly and flexible application of multi-fractionation. However, it has also disadvantages and the most negative point is that it cannot control the patient motion during treatment as lowly as the level of the frame-based radiosurgery, which could affect to the treatment accuracy. In the present study, we analyzed the geometric uncertainty of the intra-fraction motion using the actual treatment records of 294-CyberKnife treatments for brain tumors. Based on the analysis, we statistically presented the magnitude of intra-fraction motion in frameless radiosurgy. The result could provide the quantitative information to determine the adequate treatment margins to compensate the intra-fraction movements.

무고정틀 두개 방사선 시술은 두개 고정틀 방식에 비해 환자 친화적이며 다중 분할 치료의 적용이 용이하다는 장점을 가진다. 그러나, 환자의 움직임을 완전히 제어할 수 없기 때문에 치료 중 움직임으로 인해 시술의 정확도가 영향을 받을 수 있다. 본 연구에서는 종양 추적 방식의 무고정틀 방사선 치료를 시행 받은 환자의 실제 치료 기록을 분석하여 무고정틀 방사선 치료 시 발생할 수 있는 치료 중 환자의 움직임을 분석하였다. 사이버나이프(CyberKnife, Accuray Inc, CA)를 이용한 294회의 뇌종양 방사선 수술 기록을 분석하였으며, 이를 토대로 치료시간에 따른 치료 중 움직임의 크기를 통계적으로 제시하였다. 본 연구의 결과는 무고정틀 방사선 수술 시 고려되어야 할 치료 중 움직임에 대한 기본 지표로 활용될 수 있을 것으로 생각된다.

Keywords

References

  1. Leksell L: The stereotaxic method and radiosurgery of the brain. Acta Chir Scand 102:316-319 (1951)
  2. Klein EE, Hanley J, Bayouth J, et al: Task Group 142 report: Quality assurance of medical accelerators. Med Phys 36: 4197-4212 (2009) https://doi.org/10.1118/1.3190392
  3. Schell MC, Larson DA, Leavitt DD, Lutz WR, Podgorsak EB, Wu A: Stereotactic radiosurgery, AAPM Radiation Therapy Committee Task Group 42 Report No. 54 (1995)
  4. Benedict SH, Yenice KM, Galvin JM, et al: Sterotactic body radiation therapy: The report of AAPM Task Group 101. Med Phys 37:4078-4101 (2010) https://doi.org/10.1118/1.3438081
  5. Minniti G, Scaringi C, Clarke E, Valerani M, Osti M, Enrici RM: Frameless Linac-based stereotactic radiosurgery (SRS) for brain metastases: analysis of patient repositioning using a mask fixation system and clinical outcomes. Radiat Oncol 6:158 (2011) https://doi.org/10.1186/1748-717X-6-158
  6. Ramakrishna N, Rosca F, Friesen S, Tezcanli E, Zygmanszki P, Hacker F: A clinical comparison of patient setup and intra-fraction motion using frame-based radiosurgery versus a frameless image-guided radiosurgery system for intracranial lesions. Radiother Oncol 95:109-115 (2010) https://doi.org/10.1016/j.radonc.2009.12.030
  7. Gevaert T, Verellen D, Engels B, et al: Clinical evaluation of a robotic 6-degree of freedom treatment couch for frameless radiasurgery. Int J Raiat Oncol Biol Phys 83:467-474 (2011)
  8. Tryggestad E, Christian M, Ford E, et al: Inter- and intrafraction patient positioning uncertainties for intracranial radiotherapy: A study of four frameless thermoplastic mask-based immobilization strategies using daily cone-beam CT. Int J Radiat Oncol Biol Phys 80:281-290 (2011) https://doi.org/10.1016/j.ijrobp.2010.06.022
  9. Gevaert T, Verellen D, Tournel K, et al: Setup accuracy of the Novalis Exactrac 6DOF system for frameless radiosurgery. Int J Radiat Oncol Biol Phys 82:1627-1635 (2012) https://doi.org/10.1016/j.ijrobp.2011.01.052
  10. Murphy MJ, Chang SD, Gibbs IC, et al: Patterns of patient movement during frameless image-guided radiosurgery. Int J Radiat Oncol Biol Phys 55:1400-1408 (2003) https://doi.org/10.1016/S0360-3016(02)04597-2
  11. Fu D, Kuduvalli G, Mitrovic V, Main W, Thomson L: Automated skull tracking for the CyberKnife image-guided radiosurgery system. Proc of SPIE 5744:366-377 (2005)
  12. Khan FM: Treatment planning in radiation oncology. 2nd ed, Lippincott Williams & Wilkins, Philadelphia, USA (2007). pp. 189
  13. van Herk M, Remeijer P, Lebesque JV: Inclusion of geometric uncertainties in treatment plan evaluation. Int J Radiat Oncol Biol Phys 52:1407-1422 (2002) https://doi.org/10.1016/S0360-3016(01)02805-X