• Title/Summary/Keyword: Intestinal microbiota

Search Result 188, Processing Time 0.03 seconds

Simotang Alleviates the Gastrointestinal Side Effects of Chemotherapy by Altering Gut Microbiota

  • Deng, Lijing;Zhou, Xingyi;Lan, Zhifang;Tang, Kairui;Zhu, Xiaoxu;Mo, Xiaowei;Zhao, Zongyao;Zhao, Zhiqiang;Wu, Mansi
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.4
    • /
    • pp.405-418
    • /
    • 2022
  • Simotang oral liquid (SMT) is a traditional Chinese medicine (TCM) consisting of four natural plants and is used to alleviate gastrointestinal side effects after chemotherapy and functional dyspepsia (FD). However, the mechanism by which SMT helps cure these gastrointestinal diseases is still unknown. Here, we discovered that SMT could alleviate gastrointestinal side effects after chemotherapy by altering gut microbiota. C57BL/6J mice were treated with cisplatin (DDP) and SMT, and biological samples were collected. Pathological changes in the small intestine were observed, and the intestinal injury score was assessed. The expression levels of the inflammatory factors IL-1β and IL-6 and the adhesive factors Occludin and ZO-1 in mouse blood or small intestine tissue were also detected. Moreover, the gut microbiota was analyzed by high-throughput sequencing of 16S rRNA amplicons. SMT was found to effectively reduce gastrointestinal mucositis after DDP injection, which lowered inflammation and tightened the intestinal epithelial cells. Gut microbiota analysis showed that the abundance of the anti-inflammatory microbiota was downregulated and that the inflammatory microbiota was upregulated in DDP-treated mice. SMT upregulated anti-inflammatory and anticancer microbiota abundance, while the inflammatory microbiota was downregulated. An antibiotic cocktail (ABX) was also used to delete mice gut microbiota to test the importance of gut microbiota, and we found that SMT could not alleviate gastrointestinal mucositis after DDP injection, showing that gut microbiota might be an important mediator of SMT treatment. Our study provides evidence that SMT might moderate gastrointestinal mucositis after chemotherapy by altering gut microbiota.

Intestinal Microbial Dysbiosis in Beagles Naturally Infected with Canine Parvovirus

  • Park, Jun Seok;Guevarra, Robin B.;Kim, Bo-Ra;Lee, Jun Hyung;Lee, Sun Hee;Cho, Jae Hyoung;Kim, Hyeri;Cho, Jin Ho;Song, Minho;Lee, Ju-Hoon;Isaacson, Richard E.;Song, Kun Ho;Kim, Hyeun Bum
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.9
    • /
    • pp.1391-1400
    • /
    • 2019
  • Canine parvoviral enteritis (PVE) is an important intestinal disease of the puppies; however, the potential impact of the canine parvovirus (CPV) on the gut microbiota has not been investigated. Therefore, the aim of this study was to evaluate the gut microbial shifts in puppies naturally infected with CPV. Fecal samples were collected from healthy dogs and those diagnosed with PVE at 4, 6, 8, and 12 weeks of age. The distal gut microbiota of dogs was characterized using Illumina MiSeq sequencing of the bacterial 16S rRNA genes. The sequence data were analyzed using QIIME with an Operational Taxonomic Unit definition at a similarity cutoff of 97%. Our results showed that the CPV was associated with significant microbial dysbiosis of the intestinal microbiota. Alpha diversity and species richness and evenness in dogs with PVE decreased compared to those of healthy dogs. At the phylum level, the proportion of Proteobacteria was significantly enriched in dogs with PVE while Bacteroidetes was significantly more abundant in healthy dogs (p < 0.05). In dogs with PVE, Enterobacteriaceae was the most abundant bacterial family accounting for 36.44% of the total bacterial population compared to only 0.21% in healthy puppies. The two most abundant genera in healthy dogs were Prevotella and Lactobacillus and their abundance was significantly higher compared to that of dogs with PVE (p < 0.05). These observations suggest that disturbances of gut microbial communities were associated with PVE in young dogs. Evaluation of the roles of these bacterial groups in the pathophysiology of PVE warrants further studies.

Decoding the intestinal microbiota repertoire of sow and weaned pigs using culturomic and metagenomic approaches

  • Mun, Daye;Kim, Hayoung;Shin, Minhye;Ryu, Sangdon;Song, Minho;Oh, Sangnam;Kim, Younghoon
    • Journal of Animal Science and Technology
    • /
    • v.63 no.6
    • /
    • pp.1423-1432
    • /
    • 2021
  • To elucidate the role and mechanism of microbes, we combined culture-dependent and culture-independent approaches to investigate differences in gut bacterial composition between sows and weaned pigs. Under anaerobic conditions, several nonselective and selective media were used for isolation from fecal samples. All isolated bacteria were identified and classified through 16S rRNA sequencing, and the microbiota composition of the fecal samples was analyzed by metagenomics using next generation sequencing (NGS) technology. A total of 278 and 149 colonies were acquired from the sow and weaned pig fecal samples, respectively. Culturomics analysis revealed that diverse bacterial genus and species belonged to Firmicutes, Actinobacteria, Proteobacteria, and Bacteroidetes were isolated from sow and weaned pigs. When comparing culture-dependent and culture-independent analyses, 191 bacterial species and 2 archaeal bacterial species were detected through culture-independent analysis, and a total of 23 bacteria were isolated through a culture-dependent approach, of which 65% were not detected by metagenomics. In conclusion, culturomics and metagenomics should be properly combined to fully understand the intestinal microbiota, and livestock-derived microbial resources should be informed by culturomic approaches to understand and utilize the mechanism of host-microbe interactions.

Intestinal Alkaline Phosphatase: Potential Roles in Promoting Gut Health in Weanling Piglets and Its Modulation by Feed Additives - A Review

  • Melo, A.D.B.;Silveira, H.;Luciano, F.B.;Andrade, C.;Costa, L.B.;Rostagno, M.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.1
    • /
    • pp.16-22
    • /
    • 2016
  • The intestinal environment plays a critical role in maintaining swine health. Many factors such as diet, microbiota, and host intestinal immune response influence the intestinal environment. Intestinal alkaline phosphatase (IAP) is an important apical brush border enzyme that is influenced by these factors. IAP dephosphorylates bacterial lipopolysaccharides (LPS), unmethylated cytosine-guanosine dinucleotides, and flagellin, reducing bacterial toxicity and consequently regulating toll-like receptors (TLRs) activation and inflammation. It also desphosphorylates extracellular nucleotides such as uridine diphosphate and adenosine triphosphate, consequently reducing inflammation, modulating, and preserving the homeostasis of the intestinal microbiota. The apical localization of IAP on the epithelial surface reveals its role on LPS (from luminal bacteria) detoxification. As the expression of IAP is reported to be downregulated in piglets at weaning, LPS from commensal and pathogenic gram-negative bacteria could increase inflammatory processes by TLR-4 activation, increasing diarrhea events during this phase. Although some studies had reported potential IAP roles to promote gut health, investigations about exogenous IAP effects or feed additives modulating IAP expression and activity yet are necessary. However, we discussed in this paper that the critical assessment reported can suggest that exogenous IAP or feed additives that could increase its expression could show beneficial effects to reduce diarrhea events during the post weaning phase. Therefore, the main goals of this review are to discuss IAP's role in intestinal inflammatory processes and present feed additives used as growth promoters that may modulate IAP expression and activity to promote gut health in piglets.

A Review of Interactions between Dietary Fiber and the Gastrointestinal Microbiota and Their Consequences on Intestinal Phosphorus Metabolism in Growing Pigs

  • Metzler, B.U.;Mosenthin, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.4
    • /
    • pp.603-615
    • /
    • 2008
  • Dietary fiber is an inevitable component in pig diets. In non-ruminants, it may influence many physiological processes in the gastrointestinal tract (GIT) such as transit time as well as nutrient digestion and absorption. Moreover, dietary fiber is also the main substrate of intestinal bacteria. The bacterial community structure is largely susceptible to changes in the fiber content of a pig's diet. Indeed, bacterial composition in the lower GIT will adapt to the supply of high levels of dietary fiber by increased growth of bacteria with cellulolytic, pectinolytic and hemicellulolytic activities such as Ruminococcus spp., Bacteroides spp. and Clostridium spp. Furthermore, there is growing evidence for growth promotion of beneficial bacteria, such as lactobacilli and bifidobacteria, by certain types of dietary fiber in the small intestine of pigs. Studies in rats have shown that both phosphorus (P) and calcium (Ca) play an important role in the fermentative activity and growth of the intestinal microbiota. This can be attributed to the significance of P for the bacterial cell metabolism and to the buffering functions of Ca-phosphate in intestinal digesta. Moreover, under P deficient conditions, ruminal NDF degradation as well as VFA and bacterial ATP production are reduced. Similar studies in pigs are scarce but there is some evidence that dietary fiber may influence the ileal and fecal P digestibility as well as P disappearance in the large intestine, probably due to microbial P requirement for fermentation. On the other hand, fermentation of dietary fiber may improve the availability of minerals such as P and Ca which can be subsequently absorbed and/or utilized by the microbiota of the pig's large intestine.

Influence of spent ginger yeast cultures on the production performance, egg quality, serum composition, and intestinal microbiota of laying hens

  • Liu, Junhan;Jin, Yuhong;Yang, Junhua
    • Animal Bioscience
    • /
    • v.35 no.8
    • /
    • pp.1205-1214
    • /
    • 2022
  • Objective: Spent ginger is a byproduct of juice extraction from the rhizome of ginger (Zingiber officinale). Despite its nutritional value, it is difficult to preserve or further process and thus is often wasted. This study uses spent ginger as a substrate for fermentation and cultivates spent ginger yeast cultures (SGYCs) that are then added to the feed of laying hens. The effects of SGYCs on production performance, egg quality, serum composition, and intestinal microbiota of laying hens were investigated. Methods: Eighty 60-week-old Hy-Line Brown hens were separated into 5 experimental groups with 4 replicates per group (4 hens per cage, 4 cages per replicate). The control group was fed a basal diet while experimental groups were also given SGYCs at the levels of 5, 10, 20, and 40 g/kg for 6 weeks. Results: The addition of SGYCs significantly increased the laying rate and nutrient digestibility, decreased feed conversion ratio, and enhanced the color of egg yolks (p<0.05). No changes were observed in activity levels of alanine aminotransferase and aspartate aminotransferase in the serum (p>0.05), but the activities of superoxide dismutase, glutathione peroxidase, and peroxidase all significantly increased, and contents of malondialdehyde were significantly reduced (p<0.05). In addition, changes in the relative abundance of Firmicutes and Bacteroidetes might be the main factor contributing to the significant increase in the apparent digestibility of crude protein and crude fat in laying hens (p<0.05). Conclusion: The current evidence shows that dietary supplementation of SGYCs to the feed of laying hens can improve laying rates, enhance antioxidative defenses, and influence dominant intestinal bacteria.

Serum Cholesterol-lowering Effect of Fermented Milk and Effect of Intestinal Microflora Composition on Function of Fermented Milk (발효유의 혈중 콜레스테롤 조절 기능과 발효유 기능성에 대한 장내 균총 구성의 영향)

  • Kim, Yujin;Yoon, Yohan;Lee, Soomin
    • Journal of Dairy Science and Biotechnology
    • /
    • v.37 no.1
    • /
    • pp.27-32
    • /
    • 2019
  • Fermented milk has been developed with its functionalities, and its health-promoting ability has been spotlighted due to its relationship with diseases such as cancer, cardiovascular disease, and diabetes, and gut microbiota. As national burden of cardiovascular disease increases over time, there is a need to prevent hypercholesterolemia. To achieve that, gut microbiota, which is altered by host's diet and environment, plays important roles in lowering cholesterol in the blood. Moreover, fermented milk may be effective as a cholesterol-lowering agent by altering gut microbiota composition. Gut microbiota may alter not only functions of the fermented milk but also bio-accessibility of functional materials. These results suggested that gut microbiota composition influences the impact of fermented milk. Thus, we should understand how functional materials are degraded by gut microbiota and absorbed into the gut.

Zerumbone Restores Gut Microbiota Composition in ETBF Colonized AOM/DSS Mice

  • Cho, Hye-Won;Rhee, Ki-Jong;Eom, Yong-Bin
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.11
    • /
    • pp.1640-1650
    • /
    • 2020
  • Colorectal cancer (CRC) is the leading cause of common malignant neoplasm worldwide. Many studies have analyzed compositions of gut microbiota associated with various diseases such as inflammatory bowel diseases (IBD) and colon cancer. One of the most representative bacteria involved in CRC is enterotoxigenic Bacteroides fragilis (ETBF), a species belonging to phylum Bacteroidetes. We used ETBF colonized mice with azoxymethane (AOM)/dextran sulphate sodium (DSS) and zerumbone, a compound with anti-bacterial effect, to determine whether zerumbone could restore intestinal microbiota composition. Four experimental groups of mice were used: sham, ETBF colonized AOM/DSS group, ETBF colonized AOM/DSS group zerumbone 60 mg kg-1 (ETBF/AOM/DSS + Z (60)), and only zerumbone (60 mg kg-1)-treated group. We performed reversible dye terminators-based analysis of 16S rRNA gene region V3-V4 for group comparison. Microbiota compositions of ETBF/AOM/DSS + Z (60) group and ETBF colonized AOM/DSS group not given zerumbone were significantly different. There were more Bacteroides in ETBF/AOM/DSS + Z (60) group than those in ETBF colonized AOM/DSS group, suggesting that B. fragilis could be a normal flora activated by zerumbone. In addition, based on linear discriminant analysis of effect size (LEfSe) analysis, microbial diversity decreased significantly in the ETBF colonized AOM/DSS group. However, after given zerumbone, the taxonomic relative abundance was increased. These findings suggest that zerumbone not only influenced the microbial diversity and richness, but also could be helpful for enhancing the balance of gut microbial composition. In this work, we demonstrate that zerumbone could restore the composition of intestinal microbiota.

The Combination of Bacillus natto JLCC513 and Ginseng Soluble Dietary Fiber Attenuates Ulcerative Colitis by Modulating the LPS/TLR4/NF-κB Pathway and Gut Microbiota

  • Mingyue Ma;Yueqiao Li;Yuguang He;Da Li;Honghong Niu;Mubai Sun;Xinyu Miao;Ying Su;Hua Zhang;Mei Hua;Jinghui Wang
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.6
    • /
    • pp.1287-1298
    • /
    • 2024
  • Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) that is currently difficult to treat effectively. Both Bacillus natto (BN) and ginseng-soluble dietary fiber (GSDF) are anti-inflammatory and helps sustain the intestinal barrier. In this study, the protective effects and mechanism of the combination of B. natto JLCC513 and ginseng-soluble dietary fiber (BG) in DSS-induced UC mice were investigated. Intervention with BG worked better than taking BN or GSDF separately, as evidenced by improved disease activity index, colon length, and colon injury and significantly reduced the levels of oxidative and inflammatory factors (LPS, ILs, and TNF-α) in UC mice. Further mechanistic study revealed that BG protected the intestinal barrier integrity by maintaining the tight junction proteins (Occludin and Claudin1) and inhibited the LPS/TLR4/NF-κB pathway in UC mice. In addition, BG increased the abundance of beneficial bacteria such as Bacteroides and Turicibacter and reduced the abundance of harmful bacteria such as Allobaculum in the gut microbiota of UC mice. BG also significantly upregulated genes related to linoleic acid metabolism in the gut microbiota. These BG-induced changes in the gut microbiota of mice with UC were significantly correlated with changes in pathological indices. In conclusion, this study demonstrated that BG exerts protective effect against UC by regulating the LPS/TLR4/NF-κB pathway and the structure and metabolic function of gut microbiota. Thus, BG can be potentially used in intestinal health foods to treat UC.

Personalized Diets based on the Gut Microbiome as a Target for Health Maintenance: from Current Evidence to Future Possibilities

  • Eun-Ji Song;Ji-Hee Shin
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.12
    • /
    • pp.1497-1505
    • /
    • 2022
  • Recently, the concept of personalized nutrition has been developed, which states that food components do not always lead to the same metabolic responses, but vary from person to person. Although this concept has been studied based on individual genetic backgrounds, researchers have recently explored its potential role in the gut microbiome. The gut microbiota physiologically communicates with humans by forming a bidirectional relationship with the micronutrients, macronutrients, and phytochemicals consumed by the host. Furthermore, the gut microbiota can vary from person to person and can be easily shifted by diet. Therefore, several recent studies have reported the application of personalized nutrition to intestinal microflora. This review provides an overview of the interaction of diet with the gut microbiome and the latest evidence in understanding the inter-individual differences in dietary responsiveness according to individual baseline gut microbiota and microbiome-associated dietary intervention in diseases. The diversity of the gut microbiota and the presence of specific microorganisms can be attributed to physiological differences following dietary intervention. The difference in individual responsiveness based on the gut microbiota has the potential to become an important research approach for personalized nutrition and health management, although further well-designed large-scale studies are warranted.