Intestinal Alkaline Phosphatase: Potential Roles in Promoting Gut Health in Weanling Piglets and Its Modulation by Feed Additives - A Review |
Melo, A.D.B.
(School of Agricultural Sciences and Veterinary Medicine, Pontificia Universidade Catolica do Parana)
Silveira, H. (Department of Animal Sciences, Universidade Federal de Lavras) Luciano, F.B. (School of Agricultural Sciences and Veterinary Medicine, Pontificia Universidade Catolica do Parana) Andrade, C. (School of Agricultural Sciences and Veterinary Medicine, Pontificia Universidade Catolica do Parana) Costa, L.B. (School of Agricultural Sciences and Veterinary Medicine, Pontificia Universidade Catolica do Parana) Rostagno, M.H. (Department of Animal Sciences, Purdue University) |
1 | Brun, L. R., M. L. Brance, M. Lombarte, M. Lupo, V. E. Di Loreto, and A. Rigalli. 2014. Regulation of intestinal calcium absorption by luminal calcium content: role of intestinal alkaline phosphatase. Mol. Nutr. Food. Res. 58:1546-1551. DOI |
2 | Burkey, T. E., K. A. Skjolaas, and J. E. Minton. 2009. Board-invited review: porcine mucosal immunity of the gastrointestinal tract. J. Anim. Sci. 87:1493-1501. DOI |
3 | Cario, E. 2005. Bacterial interactions with cells of the intestinal mucosa: Toll-like receptors and NOD2. Gut. 54:1182-1193. DOI |
4 | Chen, K. T., M. S. Malo, A. K. Moss, S. Zeller, P. Johnson, F. Ebrahimi, G. Mostafa, S. N. Alam, S. Ramasamy, H. S. Warren, E. L. Hohmann, and R. A. Hodin. 2010. Identification of specific targets for the gut mucosal defense factor intestinal alkaline phosphatase. Am. J. Physiol. Gastrointest. Liver Physiol. 299:G467-G475. DOI |
5 | Chen, K. T., M. S. Malo, L. K. Beasley-Topliffe, K. Poelstra, J. L. Millan, G. Mostafa, S. N. Alam, S. Ramasamy, H. S. Warren, E. L. Hohmann, and R. A. Hodin. 2011. A role for intestinal alkaline phosphatase in the maintenance of local gut immunity. Dig. Dis. Sci. 56:1020-1027. DOI |
6 | de Lange, C. F. M., J. Pluske, J. Gong, and C. M. Nyachoti. 2010. Strategic use of feed ingredients and feed additives to stimulate gut health and development in young pigs. Livest. Sci. 134:124-134. DOI |
7 | Eisenhut, M. 2006. Changes in ion transport in inflammatory disease. J. Inflamm (Lond). 3:5. DOI |
8 | Fairbrother, J. M., E. Nadeau, and C. L. Gyles. 2005. Escherichia coli in postweaning diarrhea in pigs: an update on bacterial types, pathogenesis, and prevention strategies. Anim. Health Res. Rev. 6:17-39. DOI |
9 | Gallois, M. and I. P. Oswald. 2008. Immunomodulators as efficient alternatives to in-feed antimicrobials in pig production. Arch. Zootech. 11:15-32. |
10 | Gao, M., N. London, K. Cheng, R. Tamura, J. Jin, O. Schueler-Furman, and H. Yin. 2014. Rationally designed macrocyclic peptides as synergistic agonists of LPS-induced inflammatory response. Tetrahedron. 70:7664-7668. DOI |
11 | Goldberg, R. F., W. G. Austen, Jr., X. Zhang, G. Munene, G. Mostafa, S. Biswas, M. McCormack, K. R. Eberlin, J. T. Nguyen, H. S. Tatlidede, H. S. Warren, S. Narisawa, J. L. Millán, and R. A. Hodin. 2008. Intestinal alkaline phosphatase is a gut mucosal defense factor maintained by enteral nutrition. Proc. Natl. Acad. Sci. USA 105:3551-3556. DOI |
12 | Goldstein, D. J., C. Rogers, and H. Harris. 1982. A search for trace expression of placental-like alkaline phosphatase in non-malignant human tissues: demonstration of its occurrence in lung, cervix, testis and thymus. Clin. Chim. Acta. 125:63-75. DOI |
13 | Heo, J. M., F. O. Opapeju, J. R. Pluske, J. C. Kim, D. J. Hampson, and C. M. Nyachoti. 2013. Gastrointestinal health and function in weaned pigs: a review of feeding strategies to control postweaning diarrhoea without using in-feed antimicrobial compounds. J. Anim. Physiol. Anim. Nutr (Berl). 97:207-237. DOI |
14 | Howe, L. M. 2000. Novel agents in the therapy of endotoxic shock. Expert. Opin. Investig. Drugs. 9:1363-1372. DOI |
15 | Hu, C. H., K. Xiao, J. Song, and Z. S. Luan. 2013. Effects of zinc oxide supported on zeolite on growth performance, intestinal microflora and permeability, and cytokines expression of weaned pigs. Anim. Feed. Sci. Technol. 181:65-71. DOI |
16 | Lackeyram, D., C. Yang, T. Archbold, K. C. Swanson, and M. Z. Fan. 2010. Early weaning reduces small intestinal alkaline phosphatase expression in pigs. J. Nutr. 140:461-468. DOI |
17 | Jang, I. S., Y. H. Ko, S. Y. Kang, and C. Y. Lee. 2007. Effect of a commercial essential oil on growth performance, digestive enzyme activity and intestinal microflora population in broiler chickens. Anim. Feed. Sci. Technol. 134:304-315. DOI |
18 | Kim, J. C., C. F. Hansen, B. P. Mullan, and J. R. Pluske. 2012. Nutrition and pathology of weaner pigs: Nutritional strategies to support barrier function in the gastrointestinal tract. Anim. Feed. Sci. Technol. 173:3-16. DOI |
19 | Koyama, I., T. Matsunaga, T. Harada, S. Hokari, and T. Komoda. 2002. Alkaline phosphatases reduce toxicity of lipopolysaccharides in vivo and in vitro through dephosphorylation. Clin. Biochem. 35:455-461. DOI |
20 | Lalles, J. P. 2010. Intestinal alkaline phosphatase: Multiple biological roles in maintenance of intestinal homeostasis and modulation by diet. Nutr. Rev. 68:323-332. DOI |
21 | Lalles, J. P. 2014. Intestinal alkaline phosphatase: Novel functions and protective effects. Nutr. Rev. 72:82-94. DOI |
22 | Levkut, M., A. Marcin, V. Revajova, L. Lenhardt, I. Danielovic, J. Hecl, J. Blanár, M. Levkutova, and J. Pistl. 2011. Influence of oregano extract on the intestine, some plasma parameters and growth performance in chickens. Acta. Vet. Brno. 61:215-225. DOI |
23 | Levkut, M., A. L. Marcin, L. Lenhardt, P. Porvaz, V. Revajova, B. Soltysova, J. Blanar, Z. Sevcikova, and J. Pistl. 2010. Effect of sage extract on alkaline phosphatase, enterocyte proliferative activity and growth performance in chickens. Acta. Vet. Brno. 79:177-183. DOI |
24 | Martin, L., R. Pieper, N. Schunter, W. Vahjen, and J. Zentek. 2013. Performance, organ zinc concentration, jejunal brush border membrane enzyme activities and mRNA expression in piglets fed with different levels of dietary zinc. Arch. Anim. Nutr. 67:248-261. DOI |
25 | Li, X., J. Yin, D. Li, X. Chen, J. Zang, and X. Zhou. 2006. Dietary supplementation with zinc oxide increases Igf-I and Igf-I receptor gene expression in the small intestine of weanling piglets. J. Nutr. 136:1786-1791. DOI |
26 | Malo, M. S., O. Moaven, N. Muhammad, B. Biswas, S. N. Alam, K. P. Economopoulos, S. S. Gul, S. R. Hamarneh, N. S. Malo, A. Teshager, M. M. Mohamed, Q. Tao, S. Narisawa, J. L. Millan, E. L. Hohmann, H. S. Warren, S. C. Robson, and R. A. Hodin. 2014. Intestinal alkaline phosphatase promotes gut bacterial growth by reducing the concentration of luminal nucleotide triphosphates. Am. J. Physiol. Gastrointest. Liver. Physiol. 306:G826-G838. DOI |
27 | Malo, M. S., S. Biswas, M. A. Abedrapo, L. Yeh, A. Chen, and R. A. Hodin. 2006. The pro-inflammatory cytokines, IL-1beta and TNF-alpha, inhibit intestinal alkaline phosphatase gene expression. DNA. Cell. Biol. 25:684-695. DOI |
28 | Martinez-Moya, P., M. Ortega-Gonzalez, R. Gonzalez, A. Anzola, B. Ocon, C. Hernandez-Chirlaque, R. Lopez-Posadas, M. D. Suarez, A. Zarzuelo, O. Martinez-Augustin, and F. Sanchez de Medina. 2012. Exogenous alkaline phosphatase treatment complements endogenous enzyme protection in colonic inflammation and reduces bacterial translocation in rats. Pharmacol. Res. 66:144-153. DOI |
29 | McGhee, J. R., M. E. Lamm, and W. Strober. 1999. Mucosal immune responses: an overview. In: Mucosal Immunology, 2nd Ed. (Eds. P. L. Ogra, J. Mestecky, and M. E. Lamm). Academic Press, San Diego, CA, USA. pp. 485-506. |
30 | Moss, A. K., S. R. Hamarneh, M. M. Mohamed, S. Ramasamy, H. Yammine, P. Patel, K. Kaliannan, S. N. Alam, N. Muhammad, O. Moaven, A. Teshager, N. S. Malo, S. Narisawa, J. L. Millán, H. S. Warren, E. Hohmann, M. S. Malo, and R. A. Hodin. 2013. Intestinal alkaline phosphatase inhibits the proinflammatory nucleotide uridine diphosphate. Am. J. Physiol. Gastrointest. Liver. Physiol. 304:G597-604. DOI |
31 | Mussa, T., M. Ballester, E. Silva-Campa, M. Baratelli, N. Busquets, M. P. Lecours, J. Dominguez, M. Amadori, L. Fraile, J. Hernandez, and M. Montoya. 2013. Swine, human or avian influenza viruses differentially activates porcine dendritic cells cytokine profile. Vet. Immunol. Immunopathol. 154:25-35. DOI |
32 | Oshiumi, H., M. Matsumoto, K. Funami, T. Akazawa, and T. Seya. 2003. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nat. Immunol. 4:161-167. DOI |
33 | Perez, R., F. Stevenson, J. Johnson, M. Morgan, K. Erickson, N. E. Hubbard, L. Morand, S. Rudich, S. Katznelson, and J. B. German. 1998. Sodium butyrate upregulates Kupffer cell PGE2 production and modulates immune function. J. Surg. Res. 78:1-6. DOI |
34 | Pie, S., J. P. Lalles, F. Blazy, J. Laffitte, B. Seve, and I. P. Oswald. 2004. Weaning is associated with an upregulation of expression of inflammatory cytokines in the intestine of piglets. J. Nutr. 134:641-647. DOI |
35 | Poelstra, K., W. W. Bakker, P. A. Klok, J. A. Kamps, M. J. Hardonk, and D. K. Meijer. 1997a. Dephosphorylation of endotoxin by alkaline phosphatase in vivo. Am. J. Pathol. 151:1163-1169. |
36 | Poelstra, K., W. W. Bakker, P. A. Klok, M. J. Hardonk, and D. K. Meijer. 1997b. A physiologic function for alkaline phosphatase: endotoxin detoxification. Lab. Invest. 76:319-327. |
37 | Shelton, N. W., M. D. Tokach, J. L. Nelssen, R. D. Goodband, S. S. Dritz, J. M. DeRouchey, and G. M. Hill. 2011. Effects of copper sulfate, tri-basic copper chloride, and zinc oxide on weanling pig performance. J. Anim. Sci. 89:2440-2451. DOI |
38 | Prakash, U. N. and K. Srinivasan. 2010. Beneficial influence of dietary spices on the ultrastructure and fluidity of the intestinal brush border in rats. Br. J. Nutr. 104:31-39. DOI |
39 | Roselli, M., A. Finamore, I. Garaguso, M. S. Britti, and E. Mengheri. 2003. Zinc oxide protects cultured enterocytes from the damage induced by Escherichia coli. J. Nutr. 133:4077-4082. DOI |
40 | Sang, Y., J. Yang, C. R. Ross, R. R. Rowland, and F. Blecha. 2008. Molecular identification and functional expression of porcine Toll-like receptor (TLR) 3 and TLR7. Vet. Immunol. Immunopathol. 125:162-167. DOI |
41 | Shimosato, T., M. Tohno, H. Kitazawa, S. Katoh, K. Watanabe, Y. Kawai, H. Aso, T. Yamaguchi, and T. Saito. 2005. Toll-like receptor 9 is expressed on follicle-associated epithelia containing M cells in swine Peyer's patches. Immunol. Lett. 98:83-89. DOI |
42 | Shinkai, H., M. Tanaka, T. Morozumi, T. Eguchi-Ogawa, N. Okumura, Y. Muneta, T. Awata, and H. Uenishi. 2006a. Biased distribution of single nucleotide polymorphisms (SNPs) in porcine Toll-like receptor 1 (TLR1), TLR2, TLR4, TLR5, and TLR6 genes. Immunogenetics 58:324-330. DOI |
43 | Shinkai, H., Y. Muneta, K. Suzuki, T. Eguchi-Ogawa, T. Awata, and H. Uenishi. 2006b. Porcine Toll-like receptor 1, 6, and 10 genes: complete sequencing of genomic region and expression analysis. Mol. Immunol. 43:1474-1480. DOI |
44 | Taras, D., W. Vahjen, M. Macha, and O. Simon. 2006. Performance, diarrhea incidence, and occurrence of Escherichia coli virulence genes during long-term administration of a probiotic Enterococcus faecium strain to sows and piglets. J. Anim. Sci. 84:608-617. DOI |
45 | Smith, F., J. E. Clark, B. L. Overman, C. C. Tozel, J. H. Huang, J. E. Rivier, A. T. Blikslager, and A. J. Moeser. 2010. Early weaning stress impairs development of mucosal barrier function in the porcine intestine. Am. J. Physiol. Gastrointest. Liver. Physiol. 298:G352-G363. DOI |
46 | Sussman, N. L., R. Eliakim, D. Rubin, D. H. Perlmutter, K. DeSchryver-Kecskemeti, and D. H. Alpers. 1989. Intestinal alkaline phosphatase is secreted bidirectionally from villous enterocytes. Am. J. Physiol. 257(1 Pt 1):G14-G23. |
47 | Takeda, K., and S. Akira. 2004. TLR signaling pathways. Semin. Immunol. 16:3-9. DOI |
48 | Tohno, M., T. Shimosato, H. Kitazawa, S. Katoh, I. D. Iliev, T. Kimura, Y. Kawai, K. Watanabe, H. Aso, T. Yamaguchi, and T. Saito. 2005. Toll-like receptor 2 is expressed on the intestinal M cells in swine. Biochem. Biophys. Res. Commun. 330:547-554. DOI |
49 | Tohno, M., T. Shimosato, M. Moue, H. Aso, K. Watanabe, Y. Kawai, T. Yamaguchi, T. Saito, and H. Kitazawa. 2006. Toll-like receptor 2 and 9 are expressed and functional in gutassociated lymphoid tissues of presuckling newborn swine. Vet. Res. 37:791-812. DOI |
50 | Tucci, F. M., M. C. Thomaz, L. S. O. Nakaghi, M. I. Hannas, A. J. Scandolera, and F. E. L. Budino. 2011. The effect of the addition of trofic agents in weaned piglet diets over the structure and ultra-structure of small intestine and over performance. Arq. Bras. Med. Vet. Zootec. 63:931-940. DOI |
51 | Vaishnava, S. and L. V. Hooper. 2007. Alkaline phosphatase: keeping the peace at the gut epithelial surface. Cell. Host. Microbe. 2:365-367. DOI |
52 | Tuin, A., A. Huizinga-Van der Vlag, A. M. van Loenen-Weemaes, D. K. Meijer, and K. Poelstra. 2006. On the role and fate of LPS-dephosphorylating activity in the rat liver. Am. J. Physiol. Gastrointest. Liver. Physiol. 290:G377-G385. DOI |
53 | Uenishi, H. and H. Shinkai. 2009. Porcine Toll-like receptors: the front line of pathogen monitoring and possible implications for disease resistance. Dev. Comp. Immunol. 33:353-361. DOI |
54 | Uysal, G., A. Sökmen, and S. Vidinlisan. 2000. Clinical risk factors for fatal diarrhea in hospitalized children. Indian. J. Pediatr. 67:329-333. DOI |
55 | van Veen, S. Q., A. K. van Vliet, M. Wulferink, R. Brands, M. A. Boermeester, and T. M. van Gulik. 2005. Bovine intestinal alkaline phosphatase attenuates the inflammatory response in secondary peritonitis in mice. Infect. Immun. 73:4309-4314. DOI |
56 | Weber, T. E. and B. J. Kerr. 2008. Effect of sodium butyrate on growth performance and response to lipopolysaccharide in weanling pigs. J. Anim. Sci. 86:442-450. DOI |
57 | Yamamoto, M., S. Sato, K. Mori, K. Hoshino, O. Takeuchi, K. Takeda, and S. Akira. 2002. Cutting edge: A novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling. J. Immunol. 169:6668-6672. DOI |
58 | Zhang, L., J. Liu, J. Bai, X. Wang, Y. Li, and P. Jiang. 2013. Comparative expression of Toll-like receptors and inflammatory cytokines in pigs infected with different virulent porcine reproductive and respiratory syndrome virus isolates. Virol. J. 10:135. DOI |
59 | Akira, S., K. Takeda, and T. Kaisho. 2001. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat. Immunol. 2:675-680. DOI |
60 | Abasht, B., M. G. Kaiser, and S. J. Lamont. 2008. Toll-like receptor gene expression in cecum and spleen of advanced intercross line chicks infected with Salmonella enterica serovar Enteritidis. Vet. Immunol. Immunopathol. 123:314-323. DOI |
61 | Alam, S. N., H. Yammine, O. Moaven, R. Ahmed, A. K. Moss, B. Biswas, N. Muhammad, R. Biswas, A. Raychowdhury, K. Kaliannan, S. Ghosh, M. Ray, S. R. Hamarneh, S. Barua, N. S. Malo, A. K. Bhan, M. S. Malo, and R. A. Hodin. 2014. Intestinal alkaline phosphatase prevents antibiotic-induced susceptibility to enteric pathogens. Ann. Surg. 259:715-722. DOI |
62 | Artis, D. 2008. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat. Rev. Immunol. 8:411-420. DOI |
63 | Berkes, J., V. K. Viswanathan, S. D. Savkovic, and G. Hecht. 2003. Intestinal epithelial responses to enteric pathogens: Effects on the tight junction barrier, ion transport, and inflammation. Gut. 52:439-451. DOI |
64 | Bates, J. M., J. Akerlund, E. Mittge, and K. Guillemin. 2007. Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell. Host. Microbe. 2:371-382. DOI |
65 | Bederska-Łojewska, D. and M. Pieszka. 2011. Modulating gastrointestinal microflora of pigs through nutrition using feed additives. Ann. Anim. Sci. 11:333-355. |
66 | Bentala, H., W. R. Verweij, A. Huizinga-Van der Vlag, A. M. van Loenen-Weemaes, D. K. Meijer, and K. Poelstra. 2002. Removal of phosphate from lipid A as a strategy to detoxify lipopolysaccharide. Shock. 18:561-566. DOI |
67 | Beumer, C., M. Wulferink, W. Raaben, D. Fiechter, R. Brands, and W. Seinen. 2003. Calf intestinal alkaline phosphatase, a novel therapeutic drug for lipopolysaccharide (LPS)-mediated diseases, attenuates LPS toxicity in mice and piglets. J. Pharmacol. Exp. Ther. 307:737-744. DOI |
68 | Beutler, B. and E. T. Rietschel. 2003. Innate immune sensing and its roots: the story of endotoxin. Nat. Rev. Immunol. 3:169-176. DOI |
69 | Bevins, C. L., E. Martin-Porter, and T. Ganz. 1999. Defensins and innate host defence of the gastrointestinal tract. Gut. 45:911-915. DOI |
70 | Bol-Schoenmakers, M., D. Fiechter, W. Raaben, I. Hassing, R. Bleumink, D. Kruijswijk, K. Maijoor, M. Tersteeg-Zijderveld, R. Brands, and R. Pieters. 2010. Intestinal alkaline phosphatase contributes to the reduction of severe intestinal epithelial damage. Eur. J. Pharmacol. 633:71-77. DOI |