• Title/Summary/Keyword: Intestinal barrier

Search Result 103, Processing Time 0.028 seconds

Physiological understanding of host-microbial pathogen interactions in the gut

  • Lee, Sei-Jung;Choi, Sang Ho;Han, Ho Jae
    • Korean Journal of Veterinary Research
    • /
    • v.56 no.2
    • /
    • pp.57-66
    • /
    • 2016
  • The gut epithelial barrier, which is composed of the mucosal layer and the intestinal epithelium, has multiple defense mechanisms and interconnected regulatory mechanisms against enteric microbial pathogens. However, many bacterial pathogens have highly evolved infectious stratagems that manipulate mucin production, epithelial cell-cell junctions, cell death, and cell turnover to promote their replication and pathogenicity in the gut epithelial barrier. In this review, we focus on current knowledge about how bacterial pathogens regulate mucin levels to circumvent the epithelial mucus barrier and target cell-cell junctions to invade deeper tissues and increase their colonization. We also describe how bacterial pathogens manipulate various modes of epithelial cell death to facilitate bacterial dissemination and virulence effects. Finally, we discuss recent investigating how bacterial pathogens regulate epithelial cell turnover and intestinal stem cell populations to modulate intestinal epithelium homeostasis.

Effect of Glutamine on the Methotrexate Induced Gut Barrier Damage, Bacterial Translocation and Weight Changes in a Rat Model (백서에서 Methotrexate에 의하여 유발된 장관장벽손상 및 장내세균전위와 중량 변화에 대한 글루타민의 효과)

  • Kim, Eun-Jeong;Kim, Jeong-Wook
    • YAKHAK HOEJI
    • /
    • v.51 no.1
    • /
    • pp.1-6
    • /
    • 2007
  • The aim of this study was to examine whether administration of glutamine are able to prevent the methotrexate induced gut barrier damage, bacterial translocation, and weight changes. The animals with glutamine were fed with L-glutamine (1.2 and 2.4 mg/kg/day) for 7 days before methotrexate administration (20 mg/kg orally). 48 hour after methotrexate administration, intestinal permeability were measured for an assessment of the gut barrier dysfunction. Also, enteric aerobic bacterial counts, number of gram-negatives in mesenteric lymph node (MLN), liver spleen, kidney and heart were measured for an assessment of the enteric bacterial number and bacterial translocation. Amounts of food intake, body weight changes and organ weight changes of liver spleen, kidney and heart were measured. Methotrexate administration caused body and liver weight loss regardless amounts of food intakes. Methotrexate induced increasing intestinal permeability, enteric bacterial undergrowth and bacterial translocation to MLN, liver and spleen, but not kidney and heart. The supplements with glutamine reduced the intestinal permeability bacterial translocation, and not influences enteric bacterial number, and body and liver weight changes. This study suggested that glutamine might effectively reduce methotrexate induced intestinal damage and bacterial translocation, but not influence body and organ weight loss.

Effects of yeast hydrolysate supplementation on intestinal morphology, barrier, and anti-inflammatory functions of broilers

  • Wang, Ting;Cheng, Kang;Li, QiMing;Wang, Tian
    • Animal Bioscience
    • /
    • v.35 no.6
    • /
    • pp.858-868
    • /
    • 2022
  • Objective: This study was conducted to evaluate the effects of dietary yeast hydrolysate (YH) supplementation on intestinal morphology, barrier, and anti-inflammatory functions of broilers. Methods: A total of 320 one day old male broilers were randomly allocated into four groups with eight replicates of ten broilers each. The broilers were supplemented with a basal diet (the control group) or basal diets adding 50, 100, 150 mg/kg YH, respectively. This trial lasted for 42 days. The orthogonal polynomial contrasts were used to determine the linear and quadratic effects of increasing levels of YH. Results: In our previous research, supplementing YH improved growth performance by enhancing body weight gain but decreased feed-to-gain ratio. In this study, compared with the control group, dietary YH addition linearly and quadratically decreased serum diamine oxidase activity (p<0.05). Additionally, supplementing YH linearly and/or quadratically decreased jejunal crypt depth (CD), tumor necrosis factor-alpha (TNF-α) concentration as well as mucin 2, interleukin-6 (IL-6), IL-1β, TNF-α, nuclear factor kappa B, and myeloid differentiation factor 88 gene expression levels (p<0.05). Whereas the jejunal villus height (VH), VH/CD, IL-10 concentration as well as zonula occludens-1 and IL-10 gene expression levels were linearly and/or quadratically increased by YH supplementation (p<0.05). Conclusion: Dietary YH supplementation improved intestinal morphology, barrier and anti-inflammatory functions while decreased intestinal permeability of broilers, which might be related with altering pertinent genes expression. This study provides evidence of YH as a promising feed additive for broilers.

Modified Renshen Wumei Decoction Alleviates Intestinal Barrier Destruction in Rats with Diarrhea

  • Guan, Zhiwei;Zhao, Qiong;Huang, Qinwan;Zhao, Zhonghe;Zhou, Hongyun;He, Yuanyuan;Li, Shanshan;Wan, Shifang
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.9
    • /
    • pp.1295-1304
    • /
    • 2021
  • Modified Renshen Wumei decoction (MRWD), a famous traditional Chinese medicine, is widely used for treating persistent diarrhea. However, as the mechanism by which MRWD regulates diarrhea remains unknown, we examined the protective effects of MRWD on intestinal barrier integrity in a diarrhea model. In total, 48 male rats were randomly distributed to four treatment groups: the blank group (CK group), model group (MC group), Medilac-Vita group (MV group) and Chinese herb group (MRWD group). After a 21-day experiment, serum and colon samples were assessed. The diarrhea index, pathological examination findings and change in ᴅ-lactate and diamine oxidase (DAO) contents illustrated that the induction of diarrhea caused intestinal injury, which was ameliorated by MV and MRWD infusion. Metabolomics analysis identified several metabolites in the serum. Some critical metabolites, such as phosphoric acid, taurine, cortisone, leukotriene B4 and calcitriol, were found to be significantly elevated by MRWD infusion. Importantly, these differences correlated with mineral absorption and metabolism and peroxisome proliferator-activated receptor (PPAR) pathways. Moreover, it significantly increased the expression levels of TLR4, MyD88 and p-NF-κB p65 proteins and the contents of IL-1 and TNF-α, while the expression levels of occludin, claudin-1 and ZO-1 proteins decreased. These deleterious effects were significantly alleviated by MV and MRWD infusion. Our findings indicate that MRWD infusion helps alleviate diarrhea, possibly by maintaining electrolyte homeostasis, improving the intestinal barrier integrity, and inhibiting the TLR4/NF-κB axis.

Effects of compound organic acid calcium on growth performance, hepatic antioxidation and intestinal barrier of male broilers under heat stress

  • He, Junna;Ma, Lianxiang;Qiu, Jialing;Lu, Xintao;Hou, Chuanchuan;Liu, Bing;Yu, Dongyou
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.7
    • /
    • pp.1156-1166
    • /
    • 2020
  • Objective: The aim of this study was to evaluate the effects of compound organic acid calcium (COAC) on growth performance, hepatic antioxidant status and intestinal barrier of male broilers under high ambient temperature (32.7℃). Methods: Nine hundred healthy one-d-old Cobb-500 male broiler chicks were randomly assigned into three groups with six replicates of 50 birds each. A basal diet supplemented with 0% (control), 0.4% and 0.8% COAC, respectively were fed to birds for 6 weeks. All treatments were under high ambient indoor temperature of 32.7℃, and had a constant calcium and available phosphorus ratio. Results: The results showed that, compared with control, the average daily gain of broilers in 0.4% and 0.8% was significantly increased and the ratio of feed to gain in in 0.4% and 0.8% was significantly decreased at 1 to 21, 22 to 42 and 1 to 42 days of age (p<0.05). Compared with control, 0.8% COAC slightly decreased (p = 0.093) the content of malondialdehyde in liver at 42 days of age while 0.4% COAC significantly decreased (p<0.05) the activity of alkaline phosphatase. Furthermore, 0.4% COAC significantly enhanced the intestinal barrier function via increasing jejunal and ileal ocln transcription, promoting jejunal mucin 2 transcription at 42 days of age (p<0.05), and decreasing jejunal toll-like receptor 2 (TLR-2) and ileal TLR-15, inducible nitric oxide synthase compared with control group (p<0.05). Whereas, no significant differences on the transcription of interleukin-1β in jejunum and ileum were observed among three treatments (p>0.05). Overall, heat stress caused by high natural environment temperature may induce the damage to hepatic antioxidation and intestinal barrier. Conclusion: Dietary inclusion of COAC can improve the tolerance of broilers to thermal environment through the modification of antioxidative parameters in liver and the mRNA expression of genes in intestinal barrier, resulting in an optimal inclusion level of 0.4%.

Pathophysiology and protective approaches of gut injury in critical illness

  • Jung, Chang Yeon;Bae, Jung Min
    • Journal of Yeungnam Medical Science
    • /
    • v.38 no.1
    • /
    • pp.27-33
    • /
    • 2021
  • The gut is a complex organ that has played an important role in digestion, absorption, endocrine functions, and immunity. The gut mucosal barriers consist of the immunologic barrier and nonimmunologic barrier. During critical illnesses, the gut is susceptible to injury due to the induction of intestinal hyperpermeability. Gut hyperpermeability and barrier dysfunction may lead to systemic inflammatory response syndrome. Additionally, gut microbiota are altered during critical illnesses. The etiology of such microbiome alterations in critical illnesses is multifactorial. The interaction or systemic host defense modulation between distant organs and the gut microbiome is increasingly studied in disease research. No treatment modality exists to significantly enhance the gut epithelial integrity, permeability, or mucus layer in critically ill patients. However, multiple helpful approaches including clinical and preclinical strategies exist. Enteral nutrition is associated with an increased mucosal barrier in animal and human studies. The trophic effects of enteral nutrition might help to maintain the intestinal physiology, prevent atrophy of gut villi, reduce intestinal permeability, and protect against ischemia-reperfusion injury. The microbiome approach such as the use of probiotics, fecal microbial transplantation, and selective decontamination of the digestive tract has been suggested. However, its evidence does not have a high quality. To promote rapid hypertrophy of the small bowel, various factors have been reported, including the epidermal growth factor, membrane permeant inhibitor of myosin light chain kinase, mucus surrogate, pharmacologic vagus nerve agonist, immune-enhancing diet, and glucagon-like peptide-2 as preclinical strategies. However, the evidence remains unclear.

Glutamate attenuates lipopolysaccharide induced intestinal barrier injury by regulating corticotropin-releasing factor pathway in weaned pigs

  • Guo, Junjie;Liang, Tianzeng;Chen, Huifu;Li, Xiangen;Ren, Xiaorui;Wang, Xiuying;Xiao, Kan;Zhao, Jiangchao;Zhu, Huiling;Liu, Yulan
    • Animal Bioscience
    • /
    • v.35 no.8
    • /
    • pp.1235-1249
    • /
    • 2022
  • Objective: The purpose of this study was to evaluate the protection of glutamate (GLU) against the impairment in intestinal barrier function induced by lipopolysaccharide (LPS) stress in weaned pigs. Methods: Twenty-four weaned pigs were divided into four treatments containing: i) non-challenged control, ii) LPS-challenged control, iii) LPS+1.0% GLU, and iv) LPS+2.0% GLU. On day 28, pigs were treated with LPS or saline. Blood samples were collected at 0, 2, and 4 h post-injection. After blood samples collection at 4 h, all pigs were slaughtered, and spleen, mesenteric lymph nodes, liver and intestinal samples were obtained. Results: Dietary GLU supplementation inhibited the LPS-induced oxidative stress in pigs, as demonstrated by reduced malondialdehyde level and increased glutathione level in jejunum. Diets supplemented with GLU enhanced villus height, villus height/crypt depth and claudin-1 expression, attenuated intestinal histology and ultrastructure impairment induced by LPS. Moreover, GLU supplementation reversed intestinal intraepithelial lymphocyte number decrease and mast cell number increase induced by LPS stress. GLU reduced serum cortisol concentration at 4 h after LPS stress and downregulated the mRNA expression of intestinal corticotropin-releasing factor signal (corticotrophin-releasing factor [CRF], CRF receptor 1 [CRFR1], glucocorticoid receptor, tryptase, nerve growth factor, tyrosine kinase receptor A), and prevented mast cell activation. GLU upregulated the mRNA expression of intestinal transforming growth factor β. Conclusion: These findings indicate that GLU attenuates LPS-induced intestinal mucosal barrier injury, which is associated with modulating CRF signaling pathway.

Inductive Effects of Vibrio vulnificus Infections on Cytotoxic Activity and Expression of Inflammatory Cytokine Genes in Human Intestinal Epithelial Cells

  • Lee, Byung-Cheol;Kim, Tae-Sung
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.132.2-132.2
    • /
    • 2003
  • Vibrio vulnificus, a Gram-negative estuarine bacterium, is the causative agent of food-borne diseases, such as life-threatening septicemia. V. vulnificus penetrating into the intestinal epithelial barrier stimulates an inflammatory response in the adjacent intestinal mucosa. Therefore, interaction between V. vulnificus and intestinal cells is important for understanding of both the immunology of mucosal surfaces and V. vulnificus. In this study we investigated the effects of V. vulnificus infection on cytokine gene expression of human intestinal epithelial cells, Caco-2 and INT-407 cells. (omitted)

  • PDF

Curcumin protects against the intestinal ischemia-reperfusion injury: involvement of the tight junction protein ZO-1 and TNF-α related mechanism

  • Tian, Shuying;Guo, Ruixue;Wei, Sichen;Kong, Yu;Wei, Xinliang;Wang, Weiwei;Shi, Xiaomeng;Jiang, Hongyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.2
    • /
    • pp.147-152
    • /
    • 2016
  • Present study aimed to investigate the effect of curcumin-pretreatment on intestinal I/R injury and on intestinal mucosa barrier. Thirty Wistar rats were randomly divided into: sham, I/R, and curcumin groups (n=10). Animals in curcumin group were pretreated with curcumin by gastric gavage (200 mg/kg) for 2 days before I/R. Small intestine tissues were prepared for Haematoxylin & Eosin (H&E) staining. Serum diamine oxidase (DAO) and tumor necrosis factor (TNF)-${\alpha}$ levels were measured. Expression of intestinal TNF-${\alpha}$ and tight junction protein (ZO-1) proteins was detected by Western blot and/or immunohistochemistry. Serum DAO level and serum and intestinal TNF-${\alpha}$ leves were significantly increased after I/R, and the values were markedly reduced by curcumin pretreatment although still higher than that of sham group (p<0.05 or p<0.001). H&E staining showed the significant injury to intestinal mucosa following I/R, and curcumin pretreatment significantly improved the histological structure of intestinal mucosa. I/R insult also induced significantly down-regulated expression of ZO-1, and the effect was dramatically attenuated by curcumin-pretreatment. Curcumin may protect the intestine from I/R injury through restoration of the epithelial structure, promotion of the recovery of intestinal permeability, as well as enhancement of ZO-1 protein expression, and this effect may be partly attributed to the TNF-${\alpha}$ related pathway.

Acidification of drinking water improved tibia mass of broilers through the alterations of intestinal barrier and microbiota

  • Zhang, Huaiyong;Guo, Yujun;Wang, Ziyang;Wang, Yongshuai;Chen, Bo;Du, Pengfei;Zhang, Xiangli;Huang, Yanqun;Li, Peng;Michiels, Joris;Chen, Wen
    • Animal Bioscience
    • /
    • v.35 no.6
    • /
    • pp.902-915
    • /
    • 2022
  • Objective: Diet acidification supplementation is known to influence intestinal morphology, gut microbiota, and on phosphorus (P) utilization of broilers. Alterations in intestinal barrier and microbiota have been associated with systemic inflammation and thus regulating bone turnover. Hence the effect of acidifier addition to drinking water on tibia mass and the linkages between intestinal integrity and bone were studied. Methods: One-d-old male broilers were randomly assigned to normal water (control) or continuous supply of acidified water (2% the blend of 2-hydroxy-4-methylthiobutyric acid, lactic, and phosphoric acid) group with 5 replicates of 10 chicks per replicate for 42 d. Results: Acidification of drinking water improved the ash percentage and calcium content of tibia at 42 d. Broilers receiving acidified water had increased serum P concentration compared to control birds. The acidified group showed improved intestinal barrier, evidenced by increased wall thickness, villus height, the villus height to crypt depth ratio, and upregulated mucin-2 expression in ileum. Broilers receiving drinking water containing mixed organic acids had a higher proportion of Firmicutes and the ratio of Firmicutes and Bacteroidetes, as well as a lower population of Proteobacteria. Meanwhile, the addition of acidifier to drinking water resulted in declined ileal and serum proinflammatory factors level and increased immunoglobulin concentrations in serum. Concerning bone remodeling, acidifier addition was linked to a decrease in serum C-terminal cross-linked telopeptide of type I collagen and tartrate-resistant acid phosphatase reflecting bone resorption, whereas it did not apparently change serum alkaline phosphatase activity that is a bone formation marker. Conclusion: Acidified drinking water increased tibia mineral deposition of broilers, which was probably linked with higher P utilization and decreased bone resorption through improved intestinal integrity and gut microbiota and through decreased systemic inflammation.