• Title/Summary/Keyword: Intestinal Digestibility

Search Result 146, Processing Time 0.025 seconds

Gelatinized Carbohydrates in the Diet of Catla catla Fingerlings: Effect of Levels and Sources on Nutrient Utilization, Body Composition and Tissue Enzyme Activities

  • Yengkokpam, Sona;Sahu, N.P.;Pal, A.K.;Mukherjee, S.C.;Debnath, Dipesh
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.1
    • /
    • pp.89-99
    • /
    • 2007
  • A Feeding trial was conducted to study the effects of three different sources and two levels of dietary gelatinized carbohydrate (GC) on nutrient utilization, growth, tissue composition and tissue enzyme activities of fingerlings of Catla catla (15.1-15.3 g). Six isocaloric (17.1-17.5 kJ/g) semi-purified diets were prepared either with rice, corn or tapioca at 40 or 50% GC each. The crude protein (CP) level used in the diet was 35% and 25% for 40% and 50% GC level, respectively to study the protein sparing effect of GC. The degree of gelatinization was higher for corn and tapioca than rice under similar cooking conditions. After a 60-d feeding trial, dry matter, carbohydrate, protein and lipid digestibility were higher in tapioca fed groups at both the levels of GC. However, the highest specific growth rate (SGR) and protein efficiency ratio (PER) were observed in the corn fed groups at 50% GC level indicating better utilization of nutrients from gelatinized corn. Feed conversion ratio (FCR) was almost similar in corn and tapioca fed groups between two levels of GC but in rice fed groups, FCR was lower in 40% GC than 50% GC level. The results indicated higher protein-sparing effect in corn and tapioca fed groups than rice fed groups. The order of gelatinized carbohydrate utilization in Catla catla fingerlings at 50% GC level was corn>tapioca>rice. At 40% GC level, corn and tapioca were comparable and more efficiently utilized than rice. In the corn fed groups, 50% GC was comparable with 40% GC level, whereas in rice and tapioca fed groups the 40% GC was better in terms of nutrient utilization. Liver glycogen content and hepatosomatic index were significantly (p<0.05) higher in those groups fed high GC (50%) irrespective of carbohydrate sources. Higher intestinal amylase and glucose-6-phosphate dehydrogenase activities were observed in higher GC fed groups than the lower GC groups. No mortality was found in any groups at any levels of GC.

Mineral Metabolism in Singleton and Twin-pregnant Dairy Goats

  • Harter, C.J.;Castagnino, D.S.;Rivera, A.R.;Lima, L.D.;Silva, H.G.O.;Mendonca, A.N.;Bonfim, G.F.;Liesegang, A.;St-Pierre, N.;Teixeira, I.A.M.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.1
    • /
    • pp.37-49
    • /
    • 2015
  • During pregnancy, the maternal body undergoes significant physiological changes. The present study assessed the changes on calcium (Ca), phosphorus (P), magnesium (Mg), sodium (Na) and potassium (K) metabolism in singleton and twin-pregnant dairy goats. The 42 goats used ($49.5kg{\pm}7.6$ body weight [BW]) were assigned at random to treatments that were factorially arranged to account for 2 breeds (Oberhasli and Saanen), 2 pregnancy types (singleton and twin) and 3 gestation periods (80, 110, and 140 days). Digestibility trials were performed at 80, 110, and 140 days of gestation. Mineral retention during pregnancy was determined in the maternal body, femur, uterus, mammary gland, fetus and fetal fluid. Blood samples were taken during pregnancy before and after a meal, and Ca, P, Mg, Na, K ions and alkaline phosphatase activity determined in serum. Bone mineral density was determined in the right femur. Statistical analyses were performed using the SAS MIXED procedure. Dry matter intake decreased linearly up to 140 days of gestation. Maternal BW gain, and Ca, P, and Mg retention (g/kg) decreased linearly with the advance of gestation days. Macromineral retention in maternal body (g/kg) was greater in Oberhasli than Saanen goats, and their fetuses had higher Ca, P, and Mg deposition (mg/g). Mineral retention (mg/g) increased in fetuses according to pregnancy development, with no differences between singleton and twin pregnancy. In the mammary gland, the retention of all minerals (g) increased with the days of pregnancy. In conclusion, related to Ca, P, and Mg metabolism can be divided into two stages. Up to 80 days of gestation, was characterized by the preparation of the maternal body reserves for future mineral demands. From 80 days of gestation onward, was characterized by the transfer of maternal body reserves for fetal development and colostrum production. Na and K supply was provided by adjustments in endogenous excretion and an increase in intestinal absorption. Finally, mineral metabolism was specific to each genotype and, except for Na, was not affected by the number of fetuses.

Effects of α-Galactosidase Supplementation on Performance and Energy Metabolism for Broilers Fed Corn-non-dehulled Soybean Meal Diets

  • Zhang, Bo;Cao, Yunhe;Chen, Yiqun;Li, Yihang;Qiao, Shiyan;Ma, Yongxi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.10
    • /
    • pp.1340-1347
    • /
    • 2010
  • To study the effects of ${\alpha}$-galactosidase (${\alpha}$-Gal) supplementation on performance and energy metabolism, 216 Arbor Acres male broilers were placed in 36 cages of 6 birds each and allotted to 4 diets for 42 d, with 0-21 d as starter period and 22-42 d as grower period. The 4 diets were based on corn non-dehulled soybean meal in a $2{\times}2$ factorial arrangement, with 2 levels of ${\alpha}$-Gal (0 vs. 60 U/kg feed) and 2 levels of ME (normal metabolizable energy (NME) and low metabolizable energy (LME)). Bird performance was obtained at 21 and 42 d of age with samples of feces collected for nutrient digestibility from 19-21 d and 40-42 d. At 21 and 42 d, 1 bird from 6 cages of each treatment was killed to determine liver weight, intestinal pH and chyme viscosity. With the addition of ${\alpha}$-Gal the 42 d body weight (BW) and 0-42 d average daily gain (ADG) were significantly improved (p<0.05). Average daily feed intake (ADFI) of birds fed the LME diet was significantly increased compared to those fed the NME diet during starter (p<0.01) and grower (p<0.05) periods and overall (p<0.01). There was an interaction of ${\alpha}-Gal{\times}ME$ on 0-21 d ADFI (p<0.01). Supplementation of ${\alpha}$-Gal significantly improved (p<0.01) feed efficiency during the grower period and overall. Feed efficiency of birds fed the LME diet was significantly decreased (p<0.05) compared to those fed the NME diet during the starter period and overall. With the addition of ${\alpha}$-Gal apparent metabolizable energy (AME) was improved (p<0.01) by 2.1% and 1.8% during starter and grower periods, respectively. There was a main effect (p<0.05) of ${\alpha}$-Gal on the digestion of neutral detergent fiber (NDF) during the starter period and crude protein (CP), NDF and acid detergent fiber (ADF) during the grower period. With the addition of ${\alpha}$-Gal, the relative weight of liver was reduced (p<0.01) during the two phases. The duodenal and jejunal pH were significantly decreased (p<0.01) with the supplementation of ${\alpha}$at the two phases. ${\alpha}$-Gal addition reduced (p<0.01) chyme viscosity of the ileum during the starter and grower periods. Overall, ${\alpha}$-Gal showed a major effect on nutrient efficiency, improved ADG and feed efficiency, whereas LME decreased feed efficiency. The incorporation of ${\alpha}$-Gal into a LME diet could at least partially offset ME deficiency of non-dehulled soybean meal.

Direct-fed Microbials for Ruminant Animals

  • Seo, Ja-Kyeom;Kim, Seon-Woo;Kim, Myung-Hoo;Upadhaya, Santi D.;Kam, Dong-Keun;Ha, Jong-K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.12
    • /
    • pp.1657-1667
    • /
    • 2010
  • Direct-fed microbials (DFM) are dietary supplements that inhibit gastrointestinal infection and provide optimally regulated microbial environments in the digestive tract. As the use of antibiotics in ruminant feeds has been banned, DFM have been emphasized as antimicrobial replacements. Microorganisms that are used in DFM for ruminants may be classified as lactic acid producing bacteria (LAB), lactic acid utilizing bacteria (LUB), or other microorganisms including species of Lactobacillus, Bifidobacterium, Enterococcus, Streptococcus, Bacillus and Propionibacterium, strains of Megasphaera elsdenii and Prevotella bryantii and yeast products containing Saccharomyces and Aspergillus. LAB may have beneficial effects in the intestinal tract and rumen. Both LAB and LUB potentially moderate rumen conditions and improve feed efficiency. Yeast DFM may reduce harmful oxygen, prevent excess lactate production, increase feed digestibility, and improve fermentation in the rumen. DFM may also compete with and inhibit the growth of pathogens, stimulate immune function, and modulate microbial balance in the gastrointestinal tract. LAB may regulate the incidence of diarrhea, and improve weight gain and feed efficiency. LUB improved weight gain in calves. DFM has been reported to improve dry matter intake, milk yield, fat corrected milk yield and milk fat content in mature animals. However, contradictory reports about the effects of DFM, dosages, feeding times and frequencies, strains of DFM, and effects on different animal conditions are available. Cultivation and preparation of ready-to-use strict anaerobes as DFM may be cost-prohibitive, and dosing methods, such as drenching, that are required for anaerobic DFM are unlikely to be acceptable as general on-farm practice. Aero-tolerant rumen microorganisms are limited to only few species, although the potential isolation and utilization of aero-tolerant ruminal strains as DFM has been reported. Spore forming bacteria are characterized by convenience of preparation and effectiveness of DFM delivery to target organs and therefore have been proposed as DFM strains. Recent studies have supported the positive effects of DFM on ruminant performance.

Insect meal as a feed ingredient for poultry

  • Elahi, Usman;Xu, Chang-chun;Wang, Jing;Lin, Jing;Wu, Shu-geng;Zhang, Hai-jun;Qi, Guang-hai
    • Animal Bioscience
    • /
    • v.35 no.2_spc
    • /
    • pp.332-346
    • /
    • 2022
  • Shortage of protein feed resources is the major challenge to the world farm animal industry. Insects are known as an alternative protein source for poultry. A wide range of insects are available for use in poultry diets. Insect larvae thrive in manure, and organic waste, and produce antimicrobial peptides to protect themselves from microbial infections, and additionally these peptides might also be functional in poultry feed. The feed containing antimicrobial peptides can improve the growth performance, nutrient digestibility, intestinal health, and immune function in poultry. Insect meal contains a higher amount of essential amino acids compared to conventional feedstuffs. Black soldier fly, mealworm, housefly, cricket/Grasshopper/Locust (Orthoptera), silkworm, and earthworm are the commonly used insect meals in broiler and laying hen diets. This paper summarizes the nutrient profiles of the insect meals and reviews their efficacy when included in poultry diets. Due to the differences in insect meal products, and breeds of poultry, inconsistent results were noticed among studies. The main challenge for proper utilization, and the promising prospect of insect meal in poultry diet are also addressed in the paper. To fully exploit insect meal as an alternative protein resource, and exert their functional effects, modes of action need to be understood. With the emergence of more accurate and reliable studies, insect meals will undoubtedly play more important role in poultry feed industry.

Effects of Supplementation of Ruminally Protected Amino Acids on In vitro Ruminal Parameters and Milk Yield and Milk Composition of Dairy Cows in Mid-lactation (보호아미노산의 추가 공급이 반추위 발효성상 및 비유중기 착유우의 유량 및 유성분에 미치는 영향)

  • Lee, Jong-Min;Nam, In-Sik;Ahn, Jong-Ho
    • Journal of Animal Science and Technology
    • /
    • v.50 no.2
    • /
    • pp.199-208
    • /
    • 2008
  • This study was undertaken to investigate the effects of ruminally protected amino acids (Methionine and Lysine) on in vitro ruminal parameters, and in vivo milk yield and milk composition in mid-lactating cows. In the first in vitro experiment, there were no statistical significances between treatments in ruminal pH and dry matter digestibility during various incubation times. In the second in vivo experiment, milk yield decreased by 11.92% in control and 5.68% in the treatment respectively, but decrease rate of milk yield in the treatment was lower than control. Milk yields naturally decreased as time goes by since the DIMs(Days in milk) of the cows in experiment were in mid-lactation period. 4% FCM(Fat corrected milk) and milk protein yields also, respectively, decreased by 11.25% and 11.09% in control and 6.16% and 5.47% in the treatment as compared with the intial. Milk protein and milk fat production were higher in the treatment(0.90kg, 1.10kg) than those of control(0.66kg, 0.79kg). Milk fat content significantly increased with supplementing protected amino acids as compared to control(P<0.05). From the above results, protected amino acids were positively utilized in the performances of mid-lactating cows without inhibiting rumen fermentation. Further investigation is suggested for essential amino acid composition and intestinal digestion rate out of rumen bypass protein in dietary protein to be estimated.