Browse > Article
http://dx.doi.org/10.5713/ajas.2007.89

Gelatinized Carbohydrates in the Diet of Catla catla Fingerlings: Effect of Levels and Sources on Nutrient Utilization, Body Composition and Tissue Enzyme Activities  

Yengkokpam, Sona (Department of Fish Nutrition and Biochemistry, Central Institute of Fisheries Education Fisheries University)
Sahu, N.P. (Department of Fish Nutrition and Biochemistry, Central Institute of Fisheries Education Fisheries University)
Pal, A.K. (Department of Fish Nutrition and Biochemistry, Central Institute of Fisheries Education Fisheries University)
Mukherjee, S.C. (Department of Fish Pathology and Microbiology, Central Institute of Fisheries Education, Fisheries University)
Debnath, Dipesh (Department of Fish Nutrition and Biochemistry, Central Institute of Fisheries Education Fisheries University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.20, no.1, 2007 , pp. 89-99 More about this Journal
Abstract
A Feeding trial was conducted to study the effects of three different sources and two levels of dietary gelatinized carbohydrate (GC) on nutrient utilization, growth, tissue composition and tissue enzyme activities of fingerlings of Catla catla (15.1-15.3 g). Six isocaloric (17.1-17.5 kJ/g) semi-purified diets were prepared either with rice, corn or tapioca at 40 or 50% GC each. The crude protein (CP) level used in the diet was 35% and 25% for 40% and 50% GC level, respectively to study the protein sparing effect of GC. The degree of gelatinization was higher for corn and tapioca than rice under similar cooking conditions. After a 60-d feeding trial, dry matter, carbohydrate, protein and lipid digestibility were higher in tapioca fed groups at both the levels of GC. However, the highest specific growth rate (SGR) and protein efficiency ratio (PER) were observed in the corn fed groups at 50% GC level indicating better utilization of nutrients from gelatinized corn. Feed conversion ratio (FCR) was almost similar in corn and tapioca fed groups between two levels of GC but in rice fed groups, FCR was lower in 40% GC than 50% GC level. The results indicated higher protein-sparing effect in corn and tapioca fed groups than rice fed groups. The order of gelatinized carbohydrate utilization in Catla catla fingerlings at 50% GC level was corn>tapioca>rice. At 40% GC level, corn and tapioca were comparable and more efficiently utilized than rice. In the corn fed groups, 50% GC was comparable with 40% GC level, whereas in rice and tapioca fed groups the 40% GC was better in terms of nutrient utilization. Liver glycogen content and hepatosomatic index were significantly (p<0.05) higher in those groups fed high GC (50%) irrespective of carbohydrate sources. Higher intestinal amylase and glucose-6-phosphate dehydrogenase activities were observed in higher GC fed groups than the lower GC groups. No mortality was found in any groups at any levels of GC.
Keywords
Corn; Rice; Tapioca; Gelatinization; Catla catla; Enzyme; Glycogen;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 6
연도 인용수 순위
1 Wang, J. F., M. Wang, D. J. Lin, B. B. Jensen and Y. H. Zhu. 2006. The effect of source of dietary fibre and starch on ileal and fecal amino acid digestibility in growing pigs. Asian-Aust. J. Anim. Sci. 19:1040-1046.   DOI
2 Wilson, R. P. 1994. Utilization of dietary carbohydrate by fish. Aquacult. 124:67-80.   DOI   ScienceOn
3 Morel, P. C. H., J. Melai, S. L. Eady and G. D. Coles. 2005. Effect of non starch polysaccharides and resistant starch on mucin secretion and endogenous amino acid lossed in pigs. Asian-Aust. J. Anim. Sci. 18:1634-1641.   DOI
4 Silano, V., M. Furiaa, L. Gianfreda, A. Macri, R. Palescandolo, A. Rab, V. Scardi, E. Stella and F. Valfre. 1975. Inhibition of amylases from different origins by albumins from the wheat kernal. Biochem. Biophys. Acta. 391:170-178.   DOI   ScienceOn
5 Storebakken, T. 1985. Binders in fish feed. I. Effects on alginate and guar gum on growth, digestibility, feed intake and passage through the gastrointestinal tract of rainbow trout. Aquacult. 47:11-26.   DOI   ScienceOn
6 Walter, H. E. 1984. Proteinases: methods with haemoglobin, casein and azocoll as substrates. In: Methods of Enzymatic Analysis (Ed. H. V. Bergmeyer). Vol. V, Verlag Chemie, Weinheim. pp. 270-277.
7 Walton, M. J. 1986. Metabolic effects of feeding a high protein low carbohydrate diets compared to a low protein/high carbohydrate diet to rainbow trout (Salmo gairdneri). Fish Physiol. Biochem. 1:7-15.   DOI   ScienceOn
8 Wang, C. L., W. Q. Lu, D. F. Li and J. J. Xing. 2005. Effects of alpha-galactosidase supplementation to corn-soybean meal diets on nutrient utilization, performance, serum indices and organ weight in broilers. Asian-Aust. J. Anim. Sci. 18:1761-1768.   과학기술학회마을   DOI
9 Tafaj, M., V. Kolaneci, B. Junck, A. Maulbetsch, H. Steingass and W. Brochner. 2005. Influence of fibre content and concentrate level on chewing activity, ruminant digestion, digesta passage rate and nutrient digestibility in dairy cows in late lactation. Asian-Aust. J. Anim. Sci. 18:1116-1124.   DOI
10 Wooten, I. 1964. IDP Microanalysis. In: Medical Biochemistry (Ed. J. Churchill and A. Churchill). 4th Ed. pp. 101-107.
11 Hemre, G. I., O. Lie and A. Sundby. 1993. Dietary carbohydrate utilization in cod (Gadus morhua): metabolic responses to feeding and fasting. Fish Physiol. Biochem. 10:455-463.   DOI   ScienceOn
12 Hemre, G. I., O. Lie, E. Lied and G. Lambertsen. 1989. Starch as an energy source in feed for cod (Gadus morhua): digestibility and retention. Aquacult. 80:261-270.   DOI   ScienceOn
13 Shimeno, S. and T. Shikata. 1993. Regulation of carbohydrate metabolism in fish. XV. Effects of acclimatization temperature and feeding rate on carbohydrate metabolizing enzyme activity and lipid content of common carp. Bull. Jpn. Soc. Sci. Fish. 59:661-666.   DOI   ScienceOn
14 Podoskina, T. A., A. G. Podoskin and E. N. Bekina. 1997. Efficiency of utilization of some starch modification by rainbow trout (O. mykiss). Aquacult. 152:235-248.   DOI   ScienceOn
15 Shiau, S. Y. 1997. Utilization of carbohydrate in warm water fish with particular reference to tilapia, Oreochromis niloticusxO. aureus. Aquacult. 151:79-96.   DOI   ScienceOn
16 Shikata, T., D. Kheyyali and S. Shimeno. 1993. Regulation of carbohydrate metabolism in fish. XV. Effect of feeding rates on hepatopancrease enzymes and body composition in common carps. Bull. Jpn. Soc. Sci. Fish. 59:835-839.   DOI
17 Seenappa, D. and K. V. Devaraj. 1995. Effects of different levels of protein, fat and carbohydrate on growth, feed utilization and body carcass composition of fingerlings in Catla catla (Ham.). Aquacult. 129:243-249.   DOI   ScienceOn
18 Rick, W. and H. P. Stegbauer. 1974. Amylase measurement of reducing groups. In: Methods of Enzymatic Analysis (Ed. H. V. Bergmeyer), 2nd Ed., Vol. II, Academic Press, New York, USA. pp. 885-889.
19 Schwarz, F. J. and M. Kirchgessner. 1991. Influence of different carbohydrates on digestibility, growth and carcass composition of carp (Cyprinus carpio L.). In: Fish Nutrition in Practice (Ed. S. J. Kaushik and P. Luquet). IV International Symposium on Fish Nutrition and Feeding, INRA, Paris. pp. 475-478.
20 Singh, R. P. and T. Nose. 1967. Digestibility of carbohydrates in young rainbow trout. Bull. Fresh. Fish. Res. Lab. 17:21-25.
21 Nagai, M. and S. Ikeda. 1973. Carbohydrate metabolism in fish- III. Effect of dietary composition on metabolism of glucose-U-14C and glutamate-U-14C in carp. Bull. Jpn. Soc. Sci. Fish. 38:137-143.
22 Meton, I., D. Mediavilla, A. Caseras, E. Canto, F. Fernandez and I. V. Baanante. 1999. Effect of diet composition and ration size on key enzyme activities of glycolysis-gluconeogenesis, the pentose phosphate pathway and amino acid metabolism in liver of gilthead sea bream (Sparus auratus). Br. J. Nutr. 82:223-232.
23 Pfeffer, E., J. Beckmann-Toussaint, B. Henrichfreise and H. D. Jansen. 1991. Effect of extrusion on efficiency of utilization of maize starch by rainbow trout (Oncorhynchus mykiss). Aquacult. 96:293-303.   DOI   ScienceOn
24 Mohapatra, M., N. P. Sahu and A. Chaudhari. 2003. Utilization of gelatinized carbohydrate in diets in Labeo rohita fry. Aqua. Nutr. 9:189-196.   DOI   ScienceOn
25 Marjorie, A. S. 1964. In: Methods in Enzymology (Ed. S. P. Colowick and N. O. Kalpan). Vol. II, Academic Press Inc., New York, USA. p. 541.
26 Lowry, O. H., N. J. Ronebrough, A. L. Farr and R. J. Randall. 1951. Protein measurement with Folin Phenol reagent. J. Biol. Chem. 193:265-276.
27 Lei, Q. X., F. C. Li and H. C. Jiao. 2004. Effects of dietary crude protein on growth performance, nutrient utilization, immunity index and protease activity in weaner to 2 month-old New Zealand rabbits. Asian-Aust. J. Anim. Sci. 17:1447-1451.   과학기술학회마을   DOI
28 Likimani, T. A. and R. P. Wilson. 1982. Effects of diet on lipogenic enzyme activities in channel catfish hepatic and adipose tissue. J. Nutr. 112:112-117.   DOI
29 Kim, J. D. and S. J. Kaushik. 1992. Contribution of digestible energy from carbohydrates and estimation of protein/energy requirements for growth of rainbow trout. Aquacult. 106:161-169.   DOI   ScienceOn
30 Inaba, D., C. Ogino, C. Takamatsu, T. Ueda and K. Kurokawa. 1963. Digestibility of dietary components in fishes-II. Digestibility of dietary protein and starch in rainbow trout. Bull. Jpn. Soc. Sci. Fish. 29:242-244.   DOI
31 Jauncey, K. 1982. The effects of varying dietary protein level on the growth, feed conversion, protein utilization and body composition of juvenile tilapia Sarotherodon mossambicus. Aquacult. 27:43-54.   DOI   ScienceOn
32 Hung, L. T., J. Lazard, C. Mariojouls and Y. Moreau. 2002. Comparison of starch utilization in fingerlings of two Asian catfishes from the Mekong river (Pangasius bocourti Sauvage, 1880, Pangasius hypophthalmus Sauvage, 1878). Aqua. Nutr. 8:1-8.   DOI   ScienceOn
33 Hofer, R. and C. Sturmbauer. 1985. Inhibition of trout and carp ${\alpha}$- amylase by wheat. Aquacult. 48:227-283.
34 Hilton, J. W. and S. J. Slinger. 1983. Effect of wheat bran replacement of wheat middling in extrusion processed (floating) diets on the growth of juvenile rainbow trout (Salmo gairdneri). Aquacult. 35:201-210.   DOI   ScienceOn
35 Hilton, J. W., J. L. Atkinson and S. J. Slinger. 1982. Maximum tolerable level, digestion and metabolism of D-glucose (cerelose) in rainbow trout (Salmo gairdneri) reared on a practical trout diet. Can. J. Fish. Aqua. Sci. 39:1229-1234.   DOI
36 Hemre, G. I., O. Torrissen, A. Krogdahl and O. Lie. 1995b. Glucose tolerance in Atlantic salmon (Salmo salar), dependence on pre-adaptation to dietary starch and water temperature. Aqua. Nutr. 2:69-75.
37 Hidalgo, M. C., E. Urea and A. Sanz. 1999. Comparative study of digestive enzymes in fish with different nutritional habits: Proteolytic and amylase activities. Aquacult. 170:267-283.   DOI   ScienceOn
38 Hassid, W. J. and S. Abraham. 1957. Chemical procedure for analysis of polysaccharides. In: Methods in Enzymology (Ed. S. P. Colowick and N. O. Kalpan). Vol. III, Academic Press Inc., New York, USA. pp. 35-36.
39 Halver, J. E. 1976. The nutritional requirements of cultivated warm water and cold water fish species. Paper No. 31. In: FAO Technical Conference on Aquaculture, Kyoto, 26 May to 2 June. p. 9.
40 Han, Y. K., H. W. Soita and P. A. Thacker. 2005. Performance and carcass composition of growing-finishing pigs fed wheat or corn-based diets. Asian-Aust. J. Anim. Sci. 18:704-710.   과학기술학회마을   DOI
41 Grisdale-Helland, B. and S. J. Helland. 1997. Replacement of protein by fat and carbohydrate in diets of Atlantic salmon (Salmo salar) at the end of the freshwater stage. Aquacult. 152:167-180.   DOI   ScienceOn
42 Guraya, H. S. and R. T. Toledo. 1993. Determining gelatinized starch in a dry starchy product. J. Food Sci. 58:888.   DOI   ScienceOn
43 Furuichi, M. and Y. Yone. 1981. Changes of blood sugar and plasma insulin levels of fishes in glucose tolerance tests. Bull. Jpn. Soc. Sci. Fish. 46:225-229.
44 Fynn-Aikins, K., S. G. Hughes and G. W. Vandenberg. 1995. Protein retention and liver aminotranferase activities in Atlantic salmon fed diets containing different energy sources. Comp. Biochem. Physiol. 111A:163-170.
45 Kaushik, S. J. and A. De Oliva-teles. 1985. Effects of digestible energy on nitrogen and energy balance in rainbow trout. Aquacult. 50:89-101.   DOI   ScienceOn
46 Kaushik, S. J., F. Medale, B. Fauconneau and D. Blanc. 1989. Effects of digestible carbohydrates on protein/energy utilization and on glucose metabolism in rainbow trout (Salmo gairdneri). Aquacult. 79:63-74.   DOI   ScienceOn
47 Chanjula, P., M. Wanapat, C. Wachirapakorn and P. Rowlinson. 2004. Effect of synchronizing starch sources and protein (NPN) in the rumen on feed intake, rumen microbial fermentation, nutrient utilization and performance of lactating dairy cows. Asian-Aust. J. Anim. Sci. 17:1400-1410.   과학기술학회마을   DOI
48 Degani, G. and S. Viola. 1987. The protein sparing effect of carbohydrates in the diet of eels (Anguilla anguilla). Aquacult. 64:283-291.   DOI   ScienceOn
49 DeMoss, R. D. 1955. Glucose-6-phosphate and 6-phosphogluconic dehydrogenase from Leuconostoc mesenteroides. In: Methods in Enzymology (Ed. S. P. Colowick and N. O. Kalpan). Vol. I, Academic Press Inc., New York, USA. pp. 328-332.
50 Deng, D. F., S. Refstie, G. I. Hemre, C. E. Crocker, H. Y. Chen, J. J. Cech and S. S. O. Hung. 2000. A new technique of feeding repeated sampling of blood and continuous collection of urine in white sturgeon. Fish Physiol. Biochem. 22:191-197.   DOI   ScienceOn
51 Cowey, C. B. and M. J. Walton. 1989. Intermediary metabolism. In: Fish Nutrition (Ed. J. E. Halver). Academic Press, San Diego, CA. pp. 260-321
52 Crane, R. K. and A. Sols. 1955. Hexokinase in animal tissue. In: Methods in Enzymology (Ed. S. P. Colowick and N. O. Kalpan). Vol. I, Academic Press Inc., New York, USA. pp. 277-279.
53 Hemre, G. I. 2002. Carbohydrates in fish nutrition: effects on growth, glucose metabolism and hepatic enzymes. Aqua. Nutr. 8:175-194.   DOI   ScienceOn
54 Hemre, G. I., K. Sandnes, O. Lie, O. Torrissen and R. Waagbo. 1995a. Carbohydrate nutrition in Atlantic salmon, Salmo salar L.: growth and feed utilization. Aqua. Res. 26:149-154.   DOI   ScienceOn
55 AOAC. 1995. Official Methods of Analysis of AOAC International (16th Ed.), Vol. 1, Association of Official Analytical Chemists, Arlington, USA.
56 Bergot, F. 1979. Carbohydrate in rainbow trout diets: effects of the level and source of carbohydrate and the number of meals on growth and body composition. Aquacult. 78:157-167.
57 Bergot, F. 1991. Digestibility of native starches of various botanical origins by rainbow trout (Oncorhynchus mykiss). In: Fish Nutrition in Practice (Ed. S. J. Kaushik and P. Luquet). IV International Symposium on Fish Nutrition and Feeding, INRA, Paris. pp. 857-865.
58 Bergot, F. and J. Breque. 1983. Digestibility of starch by rainbow trout: effects of the physical state of starch and of the intake level. Aquacult. 34:543-547.
59 APHA. 1985. Standards methods for the examination of water and wastewater (16th Ed.), American Public Health Association, Washington, DC.
60 Brauge, C., F. Medale and G. Corraze. 1994. Effect of dietary carbohydrate levels on growth, body composition and glycaemia in rainbow trout, Oncorhynchus mykiss, reared in seawater. Aquacult. 123:109-120.   DOI   ScienceOn
61 Borrebaek, B. and B. Christophersen. 2001. Activities of glucose phosphorylation, glucose-6-phosphatase and lipogenic enzymes in the liver of perch, Perca fluviatilis, after different dietary treatment. Aqua. Res. 32:221-224.   DOI   ScienceOn
62 Borrebaek, B., R. Waagbo, B. Christopherson, M. A. Tranulis and G. I. Hemre. 1993. Adaptable hexokinase with low affinity for glucose in the liver of Atlantic salmon (Salmo salar). Comp. Biochem. Physiol. 106B:833-836.
63 Borrebaek, B. and B. Christophersen. 2000. Hepatic glucose phosphorylating activities in perch (Perca fluviatilis) after different dietary treatments. Comp. Biochem. Physiol. 125B:387-393.