• Title/Summary/Keyword: Interpolation Accuracy

Search Result 459, Processing Time 0.031 seconds

Sub-micron Control Algorithm for Grinding and Polishing Aspherical Surface

  • Kim, Hyung-Tae;Yang, Hae-Jeong;Kim, Sung-Chul
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.3
    • /
    • pp.386-393
    • /
    • 2008
  • A position control method for interpolating aspherical grinding and polishing tool path was reviewed and experimented in a nano precision machine. The position-base algorithm was reformed from the time-base algorithm, proposed in the previous study. The characteristics of the algorithm were in the velocity control loop with position feedback. The aspherical surface was divided by an interval at which each velocity and acceleration were calculated. The theoretical velocity was corrected by position error during processing. In the experiment, a machine was constructed and nano-scale linear encoders were installed at each axis. Relation between process parameters and the variation of position error was monitored and discussed. The best result from optimized parameters showed that the accuracy was 150nm and improved from the previous report.

Development of an Automatic Excitation Characteristics Measurement System of the Protective Relaying CT (보호계전기용 CT의 여자특성 자동측정 시스템 개발)

  • Kwon, Sung-Won;Kim, Mun-Seog;Kim, Jae-Young;Lee, Sung-Ha;Jung, Jae-Kap
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.868-869
    • /
    • 2008
  • An automatic excitation characteristics measurement system for the protective relaying current transformer(CT) with accuracy of about 1 % has been developed. The system can be used up to 2 kV and 10 A at power frequency. The developed system can calculate the voltage and current at knee points of $30^{\circ}$ and $45^{\circ}$ tangents in accordance with IEEE standard by the interpolation in log scale. The excitation curve of the CT is plotted in auto-scale simultaneously with measuring rms voltage and current at the secondary of the CT.

  • PDF

A state space meshless method for the 3D analysis of FGM axisymmetric circular plates

  • Wu, Chih-Ping;Liu, Yan-Cheng
    • Steel and Composite Structures
    • /
    • v.22 no.1
    • /
    • pp.161-182
    • /
    • 2016
  • A state space differential reproducing kernel (DRK) method is developed for the three-dimensional (3D) analysis of functionally graded material (FGM) axisymmetric circular plates with simply-supported and clamped edges. The strong formulation of this 3D elasticity axisymmetric problem is derived on the basis of the Reissner mixed variational theorem (RMVT), which consists of the Euler-Lagrange equations of this problem and its associated boundary conditions. The primary field variables are naturally independent of the circumferential coordinate, then interpolated in the radial coordinate using the early proposed DRK interpolation functions, and finally the state space equations of this problem are obtained, which represent a system of ordinary differential equations in the thickness coordinate. The state space DRK solutions can then be obtained by means of the transfer matrix method. The accuracy and convergence of this method are examined by comparing their solutions with the accurate ones available in the literature.

A general solution to structural performance of pre-twisted Euler beam subject to static load

  • Huang, Ying;Chen, Chang Hong;Keer, Leon M.;Yao, Yao
    • Structural Engineering and Mechanics
    • /
    • v.64 no.2
    • /
    • pp.205-212
    • /
    • 2017
  • Based on the coupled elastic bending deformation features and relationships between the internal force and deformation of pre-twisted Euler beam, the generalized strain, the equivalent constitutive equation and the equilibrium equation of pre-twisted Euler beam are developed. Based on the properties of the dual-antisymmetric matrix, the general solution of pre-twisted Euler beam is obtained. By comparison with ANSYS solution by using straight Beam-188 element based on infinite approach strategy, the results show that the developed method is available for pre-twisted Euler beam and also provide an accuracy displacement interpolation function for the subsequent finite element analysis. The effect of pre-twisted angle on the mechanical property has been investigated.

An Improved Finite Element Method by Adding Arbitrary Nodes in a Domain (임의의 절점 추가에 의한 개선 유한요소법)

  • Kim, Hyun-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1626-1633
    • /
    • 2006
  • In the present paper, in the context of the meshless interpolation of a moving least squares (MLS) type, a novel method which uses primary and secondary nodes in the domain and on the global boundary is introduced, in order to improve the accuracy of solution. The secondary nodes can be placed at any location where one needs to obtain a better resolution. The support domains for the shape functions in the MLS approximation are defined from the primary nodes, and the secondary nodes use the same support domains. The shape functions based on the MLS approximation, in an integration domain, have a single type of a rational function, which reduces the difficulty of numerical integration to evaluate the weak form. The present method is very useful in an adaptive calculation, because the secondary nodes can be easily added and moved without an additional mesh. Several numerical examples are presented to illustrate the effectiveness of the present method.

Comparison of global models for calculation of accurate and robust statistical moments in MD method based Kriging metamodel (크리깅 모델을 이용한 곱분해 기법에서 정확하고 강건한 통계적 모멘트 계산을 위한 전역모델의 비교 분석)

  • Kim, Tae-Kyun;Lee, Tae-Hee
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.678-683
    • /
    • 2008
  • Moment-based reliability analysis is the method to calculate reliability using Pearson System with first-four raw moments obtained from simulation model. But it is too expensive to calculate first four moments from complicate simulation model. To overcome this drawback the MD(multiplicative decomposition) method which approximates simulation model to kriging metamodel and calculates first four raw moments explicitly with multiplicative decomposition techniques. In general, kriging metamodel is an interpolation model that is decomposed of global model and local model. The global model, in general, can be used as the constant global model, the 1st order global model, or the 2nd order global model. In this paper, the influences of global models on the accuracy and robustness of raw moments are examined and compared. Finally, we suggest the best global model which can provide exact and robust raw moments using MD method.

  • PDF

Geometrically nonlinear analysis of FG doubly-curved and hyperbolical shells via laminated by new element

  • Rezaiee-Pajand, M.;Masoodi, Amir R.;Arabi, E.
    • Steel and Composite Structures
    • /
    • v.28 no.3
    • /
    • pp.389-401
    • /
    • 2018
  • An isoparametric six-node triangular element is utilized for geometrically nonlinear analysis of functionally graded (FG) shells. To overcome the shear and membrane locking, the element is improved by using strain interpolation functions. The Total Lagrangian formulation is employed to include the large displacements and rotations. Finding the nonlinear behavior of FG shells via laminated modeling is also the goal. A power function is employed to formulate the variation of elastic modulus through the thickness of shells. The results are presented in two ways, including the general FGM formulation and the laminated modeling. The equilibrium path is obtained by using the Generalized Displacement Control Method. Some popular benchmarks, including hyperbolical shell structures are solved to declare the correctness and accuracy of proposed formulations.

Design of Experiment for kriging (크리깅의 실험계획법)

  • Jung, Jae-Joon;Lee, Chang-Seob;Lee, Tae-Hee
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1846-1851
    • /
    • 2003
  • Approximate optimization has become popular in engineering field such as MDO and Crash analysis which is time consuming. To accomplish efficient approximate optimization, accuracy of approximate model is very important. As surrogate model, Kriging have been widely used approximating highly nonlinear system . Because Kriging employs interpolation method, it is adequate for deterministic computer simulation. Because there are no random errors and measurement errors in deterministic computer simulation, instead of classical DOE ,space filling experiment design which fills uniformly design space should be applied. In this work, various space filling designs such as maximin distance design, maximum entropy design are reviewed. And new design improving maximum entropy design is suggested and compared.

  • PDF

A Study on the Estimation of the Fatigue Life Using the Stress Generated Models in the Steel Railroad Bridges (강철도교의 응력발생모형을 이용한 피로수명 추정에 관한 연구)

  • Yong, Hwan Sun;Kim, Seok Tae;Lee, Seong Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.4 s.29
    • /
    • pp.19-29
    • /
    • 1996
  • In this paper, it is presumed that the stress time history was generated by simulation method and investigated compatibility in regard to the reappearance of stress time history. In this procedure, the identified frequency distribution of stress range of the steel railroad bridge varies with the rational values of cut off point and bar width. Thus, we show variable aspect of the equivalent stress range results from change of cut off point and bar width. In addition, we analyze the variable of RMC and RMS model due to the cut off point and bar width of the measured stress history which influencs the prediction of fatigue life in the steel railroad bridge. The simulated stress time history is carried out by the superposition method incorporating the vertical load with rotation moment obtained from the Hermition interpolation function, and compared with developing stress results from measured maxi mum stress. Through this study, we can estimate the remaining fatigue life from a safety point of view and comparative accuracy.

  • PDF

Method of Numerical Simulation by Using the Local Harmonic Functions in the Cylindrical Coordinates (국소적 조화함수를 사용한 원통좌표계에서의 유동 해석)

  • Suh, Yong-Kweon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.3 s.258
    • /
    • pp.300-305
    • /
    • 2007
  • Many practical flow problems are defined with the circular boundary. Fluid flows within a circular boundary are however susceptible to a singularity problem when the cylindrical coordinates are employed. To remove this singularity a method has been developed in this study which uses the local harmonic functions in discretization of derivatives as well as interpolation. This paper describes the basic reason for introducing the harmonic functions and the overall numerical methods. The numerical methods are evaluated in terms of the accuracy and the stability. The Lamb-dipole flow is selected as a test flow. We will see that the harmonic-function method indeed gives more accurate solutions than the conventional methods in which the polynomial functions are utilized.