• Title/Summary/Keyword: International Ocean Cruise

Search Result 19, Processing Time 0.018 seconds

Improvement in Resistance Performance of a Medium-Sized Passenger Ship with Variation of Bulbous Bow Shape (중형 여객선의 저항성능 향상을 위한 선수벌브의 형상 개선 연구)

  • Yu, Jin-Won;Lee, Young-Gill;Lee, Seung-Hee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.4
    • /
    • pp.334-341
    • /
    • 2014
  • Due to the rise of international oil prices, with the continued increase of vessel operating costs, profitability has gradually deteriorated in the some case of South Korea ferry shipping. Therefore, it is necessary to improve the resistance performance of passenger ship. Goose neck bulb can be one of the methods to improve the resistance performance of passenger ship. Goose neck bulb has been applied to passenger ships operated in Europe and large cruise line. But there is no application example in the passenger ship to be operated on a regular basis in the sea near Korea. It is needed to provide reference data that can be applied efficiently goose neck bulb on the medium-sized passenger ships. This study, intended for the medium-sized passenger ship operated short international routes, presents the design of the hull form that goose neck bulb has been applied. And the resistance performance of the designed hull confirmed by numerical simulation. The numerical simulation is performed while changing the local shape of the goose neck depending on the bulb parameters. This study finds bulb parameters and their range that can affect the resistance performance. Thus, it is possible to provide a foundation to develop the optimal design technique and regression analysis on the resistance performance and goose neck bulb.

Longitudinal static stability requirements for wing in ground effect vehicle

  • Yang, Wei;Yang, Zhigang;Collu, Maurizio
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.2
    • /
    • pp.259-269
    • /
    • 2015
  • The issue of the longitudinal stability of a WIG vehicle has been a very critical design factor since the first experimental WIG vehicle has been built. A series of studies had been performed and focused on the longitudinal stability analysis. However, most studies focused on the longitudinal stability of WIG vehicle in cruise phase, and less is available on the longitudinal static stability requirement of WIG vehicle when hydrodynamics are considered: WIG vehicle usually take off from water. The present work focuses on stability requirement for longitudinal motion from taking off to landing. The model of dynamics for a WIG vehicle was developed taking into account the aerodynamic, hydrostatic and hydrodynamic forces, and then was analyzed. Following with the longitudinal static stability analysis, effect of hydrofoil was discussed. Locations of CG, aerodynamic center in pitch, aerodynamic center in height and hydrodynamic center in heave were illustrated for a stabilized WIG vehicle. The present work will further improve the longitudinal static stability theory for WIG vehicle.

A study on an efficient prediction of welding deformation for T-joint laser welding of sandwich panel PART I : Proposal of a heat source model

  • Kim, Jae Woong;Jang, Beom Seon;Kim, Yong Tai;Chun, Kwang San
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.3
    • /
    • pp.348-363
    • /
    • 2013
  • The use of I-Core sandwich panel has increased in cruise ship deck structure since it can provide similar bending strength with conventional stiffened plate while keeping lighter weight and lower web height. However, due to its thin plate thickness, i.e. about 4~6 mm at most, it is assembled by high power $CO_2$ laser welding to minimize the welding deformation. This research proposes a volumetric heat source model for T-joint of the I-Core sandwich panel and a method to use shell element model for a thermal elasto-plastic analysis to predict welding deformation. This paper, Part I, focuses on the heat source model. A circular cone type heat source model is newly suggested in heat transfer analysis to realize similar melting zone with that observed in experiment. An additional suggestion is made to consider negative defocus, which is commonly applied in T-joint laser welding since it can provide deeper penetration than zero defocus. The proposed heat source is also verified through 3D thermal elasto-plastic analysis to compare welding deformation with experimental results. A parametric study for different welding speeds, defocus values, and welding powers is performed to investigate the effect on the melting zone and welding deformation. In Part II, focuses on the proposed method to employ shell element model to predict welding deformation in thermal elasto-plastic analysis instead of solid element model.

Some Issues on the International Regulations Associated with the Air Pollution Caused by the SOx Emission at Sea (해양에서 황산화물 오염 규제에 대한 소고)

  • Lee, G.H.;Song, Mu-Seok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.4
    • /
    • pp.221-226
    • /
    • 2008
  • Air pollution associated with the SOx emission from the shipboard propulsion and generation engines is becoming one of the major environmental concerns these days. Lead by the international organizations including IMO and European Union, a significantly strengthened air pollution related regulations have been introduced and they are becoming in practice as scheduled. Such rules are basically giving the guidelines for permissible SOx emission which can be only met by using high quality fuel oils with less sulfur content or operating scrubbing systems aiming at reducing SOx at the engine exhaust. Since both countermeasures can lead to the cost increase in ship building and operation, Korean shipbuilding industries, leading the world's market, need to be well aware of the ever changing regulations and be prepared with proper solutions. Here, we briefly summarize such latest rules and regulations on the air pollution at sea, and review some technical issues on the scrubbing systems available with some suggestions.

  • PDF

A study on role of ROK Escort Task Gruop according to recently Pirate Conducting Trend and Anti-Piracy Operation in Indian Ocean (최근 인도양 해적활동과 대해적작전 변화에 따른 한국 청해부대 역할 연구)

  • Choi, Hyoung-Min
    • Strategy21
    • /
    • s.32
    • /
    • pp.192-221
    • /
    • 2013
  • In order to deal with the current economic crisis, the U.S. government, as a part of its austerity fiscal policy, implemented a budget sequester. The sequester will hit the U.S. defense budget the hardest, and as a result will most likely put the security of the international community in jeopardy. The U.S. will have to cut 46 billion dollars from its original 525 billon defense spending in 2013. And by the year 2022, will have to cut 486.9 billion dollars. Such an astronomical decrease in the U.S. defense spending will inevitably burden the friendly nations. According to recent studies, pirate related incidents in Somalia, where piracy is most active, has declined from its 226 incidents to 76 incidents per year in 2012, a 66% drop from previous years'. However, piracy threats as well as those related to firearms still remain and thus participants of anti-piracy operations, namely the U.S., U.K., France, Canada, NCC, EUNAVFOR, and NATO, are facing a problem of declining forces. Considering the current situation as well as rising expectations from the international community, Republic of Korea, a supporter of NCC's maritime security operation, not to mention its foremost duty of securing its sea, is at a stage to re-examine its operational picture. Such action will be a good opportunity for Republic of Korea to build the trust and live up to the international community's expectation. To quote from the network theory, although in relation to other friendly nations participating in the anti-piracy operation, Republic of Korea currently remains at a single cell level, this opportunity will certainly develop Korea to a 'node' nation in which power and information would flow into. Through this expansion of operational capability, Republic of Korea will be able to exert more influence as a more developed nation. Currently however, not only is the single 4,500 ton class destroyer deployed in Somalia a limited unit to further expand the scale and amount of force projection in the area, but also the total of six 4,500 ton class destroyers ROK feet possess is at a high fatigue degree due to standard patrolling operations, midshipman cruise and the RIMPAC exercise. ROK fleet therefore must consider expanding the number of ships deployed along with either deploying combat support ships or constructing logistics support site in the African region. Thus, by expanding its operational capabilities and furthermore by abiding to the rightful responsibilities of a middle power nation, Republic of Korea will surely earn its respect among the members of the international community.

  • PDF

A large scale simulation of floe-ice fractures and validation against full-scale scenario

  • Lu, Wenjun;Heyn, Hans-Martin;Lubbad, Raed;Loset, Sveinung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.393-402
    • /
    • 2018
  • While interacting with a sloping structure, an ice floe may fracture in different patterns. For example, it can be local bending failure or global splitting failure depending on the contact properties, geometry and confinement of the ice floe. Modelling these different fracture patterns as a natural outcome of numerical simulations is rather challenging. This is mainly because the effects of crack propagation, crack branching, multi fracturing modes and eventual fragmentation within a solid material are still questions to be answered by the on-going research in the Computational Mechanic community. In order to simulate the fracturing of ice floes with arbitrary geometries and confinement; and also to simulate the fracturing events at such a large scale yet with sufficient efficiency, we propose a semi-analytical/empirical and semi-numerical approach; but with focus on the global splitting failure mode in this paper. The simulation method is validated against data we collected during the Oden Arctic Technology Research Cruise 2015 (OATRC2015). The data include: 1) camera images based on which we specify the exact geometry of ice floes before and after an impact and fracturing event; 2) IMU data based on which the global dynamic force encountered by the icebreaker is extracted for the impact event. It was found that this method presents reasonably accurate results and realistic fracturing patterns upon given ice floes.

Buckling analysis and optimal structural design of supercavitating vehicles using finite element technology

  • Byun, Wan-Il;Kim, Min-Ki;Park, Kook-Jin;Kim, Seung-Jo;Chung, Min-Ho;Cho, Jin-Yeon;Park, Sung-Han
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.4
    • /
    • pp.274-285
    • /
    • 2011
  • The supercavitating vehicle is an underwater vehicle that is surrounded almost completely by a supercavity to reduce hydrodynamic drag substantially. Since the cruise speed of the vehicle is much higher than that of conventional submarines, the drag force is huge and a buckling may occur. The buckling phenomenon is analyzed in this study through static and dynamic approaches. Critical buckling load and pressure as well as buckling mode shapes are calculated using static buckling analysis and a stability map is obtained from dynamic buckling analysis. When the finite element method (FEM) is used for the buckling analysis, the solver requires a linear static solver and an eigenvalue solver. In this study, these two solvers are integrated and a consolidated buckling analysis module is constructed. Furthermore, Particle Swarm Optimization (PSO) algorithm is combined in the buckling analysis module to perform a design optimization computation of a simplified supercavitating vehicle. The simplified configuration includes cylindrical shell structure with three stiffeners. The target for the design optimization process is to minimize total weight while maintaining the given structure buckling-free.

A Study on Crowd Evacuation Simulation Validation Method using The Safeguard Validation Data Set (SGVDS) 1 and 2 (The Safeguard Validation Data Set (SGVDS) 1과 2를 활용한 군중 대피 시뮬레이션 검증 방안에 관한 연구)

  • Seunghyun Lee;Jae Min Lee;Hyuncheol Kim
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.3
    • /
    • pp.50-59
    • /
    • 2024
  • In recent years, building architecture has become increasingly complex and larger in scale to accommodate many people. In densely populated facilities, the interiors are becoming more intricate and high-rise, with narrow corridors, hallways, and stairs. This poses challenges for evacuating occupants in case of emergencies such as fires, making it crucial to assess the evacuation safety in advance. In evacuation safety research, there are significant limitations to theoretical studies owing to their association with crowd behavior and human evacuation characteristics, as well as the risks associated with experiments involving human participants. Consequently, evacuation experiments conducted using simulation-based methodologies are gaining recognition worldwide. However, crowd simulations face validation difficulties because of variations in crowd movement and evacuation characteristics across different cases and scenarios, as well as the challenge of accurately reflecting human characteristics during evacuations. In this study, we investigated validation methods for evacuation simulations using the SAFEGUARD validation data set (SGVDS) provided by the University of Greenwich, UK. The SGVDS collects data on crowd evacuations through actual evacuation tests conducted on ColorLine's large RO-PAX ferry and Royal Caribbean International's cruise ships. The accuracy of the crowd simulations can be validated by comparing SGVDS and crowd simulation results. This study will contribute to the development of highly accurate crowd simulations by verifying various crowd simulations.

Setting Up of VTS Areas Around Jeju Using AIS Data (AIS 데이터를 활용한 제주지역 VTS 관제구역 설정)

  • Yoo, Sang-Lok;Kim, Kwang-Il
    • Journal of Navigation and Port Research
    • /
    • v.46 no.3
    • /
    • pp.209-215
    • /
    • 2022
  • On the Jeju coast, international cruise ships, passenger ships, and other ships pass frequently, as well as many fishing boats. Thus, there is a high risk of marine accidents and frequent ship collisions. Accordingly, it is urgent to establish a coastal VTS for systematic safety management of ships passing through the coastal waters of Jeju. The purpose of this study was to set the area of the VTS to be newly established. In this study, to calculate the workload of the VTS operators, a formula was proposed that reflects the monitoring workload considering the monitoring frequency and required time for target as well as non-target ships and the workload for ship collision situations. The proposed formula was applied to the newly established VTS area in Jeju. Three control sectors were set up in each VTS center. The average number of workstations per hour was approximately 1, so the division between sectors was appropriate. Thus, it was deduced that there would be no workload for the VTS operators. It is expected that the method proposed in this study can be used as primary data for calculating the appropriate number of workstations for the current VTS, and setting the VTS area for a new coastal VTS in the future.