• 제목/요약/키워드: Internal pipe coating

검색결과 12건 처리시간 0.022초

자동화 장비를 이용한 대형 상수관로 갱생을 위한 코팅재료 선정 및 방법에 관한 연구 (Investigating coating material and conditions for rehabilitation of water transmission pipe using a robotic system)

  • 김진원;김동현;이영건;이세완;김두일
    • 상하수도학회지
    • /
    • 제30권6호
    • /
    • pp.725-736
    • /
    • 2016
  • There is a growing concern on the improvement of water distribution pipeline for multi-regional water supply system in Korea along with its aging infrastructure. Rehabilitation of large diameter pipeline is more efficient in cost and time compared to replacement with trenching. The procedure for rehabilitation are diagnosis, cleaning, spraying coating material, and final inspection. The internal state of pipeline was carefully diagnosed and got C grade, which required rehabilitation. We found that 17,274,787,000 Korean won could be saved after pipe surface coating because of increased C coefficient of Hazen-Williams equation. Optimal coating material was D polyurea. We also found optimal distance between spraying nozzle and pipe wall to be 70 - 80 cm, which were critical factors for coating quality. This study also illustrated the time for spray drying to be more than 30 min. These results could be used in the quality control process during rehabilitation of aged pipelines.

대형배관 내부식 코팅공정의 온도 균일성 향상을 위한 와류날개 형상 연구 (A Study on the Temperature Uniformity for the Anti-Corrosion Coating Process of Large-Sized Water Pipes)

  • 박재현;박희성;김수태;강경무
    • 한국기계가공학회지
    • /
    • 제15권6호
    • /
    • pp.35-40
    • /
    • 2016
  • In this study, the thermal and fluid dynamic characteristics for the coating process of large-sized water pipes was studied by heating the inside of a pipe directly with a gas burner. Heat and flow analyses were performed on large pipes with various inlet shapes. Using large pipes for coating was shown to be the proper shape for heating large pipes uniformly. This type has a screw with a diameter of 200 mm installed at the inlet to provide a rotational motion to the heating air. The rotational motion resulted in a uniform temperature distribution that ranged from $289.1^{\circ}C$ to $352.1^{\circ}C$ The optimized geometric configuration of the inlet of the pipe successfully and uniformly enhanced the thermal characteristics of the devised temperature limit.

Effect of RuCl3 Concentration on the Lifespan of Insoluble Anode for Cathodic Protection on PCCP

  • Cho, H.W.;Chang, H.Y.;Lim, B.T.;Park, H.B.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • 제14권4호
    • /
    • pp.177-183
    • /
    • 2015
  • Prestressed Concrete steel Cylinder Pipe (PCCP) is extensively used as seawater pipes for cooling in nuclear power plants. The internal surface of PCCP is exposed to seawater, while the external surface is in direct contact with underground soil. Therefore, materials and strategies that would reduce the corrosion of its cylindrical steel body and external steel wiring need to be employed. To prevent against the failure of PCCP, operators provided a cathodic protection to the pre-stressing wires. The efficiency of cathodic protection is governed by the anodic performance of the system. A mixed metal oxide (MMO) electrode was developed to meet criteria of low over potential and high corrosion resistance. Increasing coating cycles improved the performance of the anode, but cycling should be minimized due to high materials cost. In this work, the effects of $RuCl_3$ concentration on the electrochemical properties and lifespan of MMO anode were evaluated. With increasing concentration of $RuCl_3$, the oxygen evolution potential lowered and polarization resistance were also reduced but demonstrated an increase in passive current density and oxygen evolution current density. To improve the electrochemical properties of the MMO anode, $RuCl_3$ concentration was increased. As a result, the number of required coating cycles were reduced substantially and the MMO anode achieved an excellent lifespan of over 80 years. Thus, we concluded that the relationship between $RuCl_3$ concentration and coating cycles can be summarized as follows: No. of coating cycle = 0.48*[$RuCl_3$ concentration, $M]^{-0.97}$.

부식억제제에 의한 상수도관의 피막 형성 및 수질개선 효과 (Coating formation of water supply pipes by inhibitor and water quality improvement effect)

  • 임재철;김진근;구자용
    • 상하수도학회지
    • /
    • 제26권1호
    • /
    • pp.97-106
    • /
    • 2012
  • To investigate the application of corrosion inhibitor on water supply pipes, turbidity, magnitude of corrosion, composition of scale and concentration of metals from an old steel pipe were analysed under inhibitor addition. The concentration of turbidity, iron and copper from the pipes under inhibitor application was 12 ~ 14% of the case which no inhibitor was applied, which suggests the application of inhibitor was very effective for internal corrosion control. In addition, SEM, EDX, XRD and XRF test results showed that application of inhibitor was effective for the decrease of iron concentration and increase of oxygen, phosphorus and calcium concentration, which suggested the existence of protective layer. Therefore, the occurrence of red water will be significantly decreased when inhibitor was applied to the old steel pipes.

금속관 내부의 음압유량 향상을 위한 기하학적 디자인 및 SLIPS 윤활 (Geometrical Design and SLIPS Lubrication for Enhancement of Negative-pressure-driven Internal Flow Rate in Metal Pipes)

  • 김동근;장창환;김성재;김대겸;김산하
    • Tribology and Lubricants
    • /
    • 제37권6호
    • /
    • pp.253-260
    • /
    • 2021
  • Metal pipes are used in a wide range of applications, from plumbing systems of large construction sites to small devices such as medical tools. When a liquid is enforced to flow through a metal pipe, a higher flow rate is beneficial for higher efficiency. Using high pressures can enhance the flow rate yet can be harmful for medical applications. Thus, we consider an optimal geometrical design to increase the flow rate in medical devices. In this study, we focus on cannulas, which are widely used small metal pipes for surgical procedures, such as liposuction. We characterize the internal flow rate driven by a negative pressure and explore its dependence on the key design parameters. We quantitatively analyze the suction characteristics for each design variable by conducting computational fluid dynamics simulations. In addition, we build a suction performance measurement system which enables the translational motion of cannulas with pre-programmed velocity for experimental validation. The inner diameter, section geometry, and hole configuration are the design factors to be evaluated. The effect of the inner diameter dominates over that of section geometry and hole configuration. In addition, the circular tube shape provides the maximum flow rate among the elliptical geometries. Once the flow rate exceeds a critical value, the rate becomes independent of the number and width of the suction holes. Finally, we introduce a slippery liquid-infused nanoporous surface (SLIPS) coating using nanoparticles and hydrophobic lubricants that effectively improves the flow rate and antifouling property of cannulas without altering the geometrical design parameter.

이중관 구조 박막형 순간온도 프로브의 응답성에 관한 연구 (A Study on the Responsibility of Thin film instantaneous surface temperature probe of a Dual-pipe structure)

  • 최석렬;박경석
    • 한국연소학회:학술대회논문집
    • /
    • 대한연소학회 2003년도 제27회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.237-242
    • /
    • 2003
  • The measurement study of instantaneous temperature at combustion chamber wall and the temperature of combustion gas has been under lots of research and development to conclude the temperature process in internal combustion engine for combustion characteristics analysis. The measurement with fast responsibility should be used for temperature measurement inside combustion chamber wall since temperature of wall changes, due to the various gas temperature, irregularly during the combustion. Therefore, thin film instantaneous surface temperature probe, which characterizes the fastest and the most accurate responsibility among contact typed temperature measurement, was used for the experiments. This new thin film instantaneous surface temperature probe improved the problems of noise and durability. The optimal coating thickness of thin film instantaneous surface temperature probe was proven to be $10{\mu}m$ for the best responsibility and durability. It also allowed the stable temperature measurement be taken up to $1,200^{\circ}C$ and proven to be read possibly from the combustion chamber wall.

  • PDF

토양 속 박테리아가 지하매설 X65 배관의 미생물 부식 거동에 미치는 영향 (Effect of Bacteria in Soil on Microbiologically Influenced Corrosion Behavior of Underground X65 Pipeline)

  • 최병학;한성희;김대현;김우식;김철만;최광수
    • 한국재료학회지
    • /
    • 제32권3호
    • /
    • pp.168-179
    • /
    • 2022
  • Microbiologically Influenced Corrosion (MIC) occurring in underground buried pipes of API 5L X65 steel was investigated. MIC is a corrosion phenomenon caused by microorganisms in soil; it affects steel materials in wet atmosphere. The microstructure and mechanical properties resulting from MIC were analyzed by OM, SEM/EDS, and mapping. Corrosion of pipe cross section was composed of ① surface film, ② iron oxide, and ③ surface/internal microbial corrosive by-product similar to surface corrosion pattern. The surface film is an area where concentrations of C/O components are on average 65 %/16 %; the main components of Fe Oxide were measured and found to be 48Fe-42O. The MIC area is divided into surface and inner areas, where high concentrations of N of 6 %/5 % are detected, respectively, in addition to the C/O component. The high concentration of C/O components observed on pipe surfaces and cross sections is considered to be MIC due to the various bacteria present. It is assumed that this is related to the heat-shrinkable sheet, which is a corrosion-resistant coating layer that becomes the MIC by-product component. The MIC generated on the pipe surface and cross section is inferred to have a high concentration of N components. High concentrations of N components occur frequently on surface and inner regions; these regions were investigated and Na/Mg/Ca basic substances were found to have accumulated as well. Therefore, it is presumed that the corrosion of buried pipes is due to the MIC of the NRB (nitrate reducing bacteria) reaction in the soil.

폐열 에너지 수집을 위한 박막형 열-전기화학전지 개발 (Development of Thin-Film Thermo-Electrochemical Cell for Harvesting Waste Thermal Energy)

  • 임형욱;강태준;김대원;김용협
    • 한국항공우주학회지
    • /
    • 제40권11호
    • /
    • pp.1010-1015
    • /
    • 2012
  • 본 연구에서 폐열 에너지를 수집하여 직접 전기로 변환하는 박막형 열전지를 제작하였다. 전도성 탄소섬유에 탄소나노튜브를 코팅함으로써 전기 전도도는 증가하였고, 다양한 곡률 반경에 대한 굽힘 실험에서 전극의 저항변화는 없었다. 열전지의 최대출력은 온도차의 제곱에 비례하여 증가하였으며, $3.4^{\circ}C$의 온도차에서 2.5 mW/kg의 전력을 생산하였다. 12시간의 방전 실험 결과, 열전지는 지속적으로 구동이 가능함을 확인하였다. 또한, 유연한 열전지를 뜨거운 유체가 흐르는 파이프에 감아 구동한 결과, 파이프의 곡률반경에 따라 내부저항은 감소하였고, 생산된 전력은 최대 30 % 상승하였다. 따라서 제작된 열전지는 다양한 곡면형 열원에 적용이 가능하다.

액체로켓엔진 배관 김발 신축 이음 모멘트 평가 (Moment Evaluations of Gimbal Expansion Joints for Liquid Rocket Engine Propellant Pipes)

  • 유재한;문일윤;이수용;최충현
    • 항공우주기술
    • /
    • 제12권1호
    • /
    • pp.105-110
    • /
    • 2013
  • 액체로켓엔진 고압 배관의 김발 신축이음은 고압에서 반복적인 회전 변위를 받게 된다. 본 연구에서는 고압에서 내부형 김발 신축이음의 모멘트 해석 및 시험을 수행하였다. 해석적으로 스프링 강성, 마찰과 측력에 의한 모멘트 값을 각각 구하고 시험으로 얻어진 전체 모멘트 값과 비교하였다. 또한 외부형 힌지 신축이음에 대하여 회전 핀에 이황화몰리브덴 코팅을 적용하여 저압에서 갈링 현상이 없어지고 마찰 계수가 감소하는 것을 확인하였다.

다핵방향족탄화수소류에 노출된 페인트 취급 근로자에서 요 중 1- Hydroxypyrene을 이용한 생물학적 모니터링 (Biological Monitoring of Paint Handling Workers exposed to PAHs using Urinary 1-Hydroxypyrene)

  • 이종성;김은아;이용학;문덕환;김광종
    • 한국산업보건학회지
    • /
    • 제15권2호
    • /
    • pp.124-134
    • /
    • 2005
  • To investigate the exposure effect of polynuclear aromatic hydrocarbons (PAHs), we measured airborne total PAHs as an external dose, urinary 1-hydroxypyrene (1-OHP) as an internal dose of PAHs exposure, and analyzed the relationship between urinary 1-OHP concentration and PAHs exposure. The study population contained 44 workers in steel-pipe coating and paint manufacture industries. The airborne PAHs was obtained during survey day, and urine were sampled at the end of shift. Personal information on age, body weight, height, eniployment duration, smoking habit, and alcohol consumption was obtained by a structured questionnaire. Airborne PAHs were analyzed by the gas chromatograph with mass selective detector. Urinary 1-OHP levels were analyzed by the high performance liquid chromatograph with ultraviolet wavelength detector. For statistical estimation, t-test, ${\chi}^2$-test, analysis of variance, correlation analysis, arid regression analysis were executed by SPSS/PC (Windows version 10). The mean of environmental total PAHs was $87.8{\pm}7.81{\mu}g/m^3$. The mean concentration ($526.5{\pm}2.85{\mu}g/m^3$) of workers in steel-pipe coating industries using coal tar enamel was the higher than that ($17.5{\pm}3.36{\mu}g/m^3$) of workers in paint manufacture industries using coal tar paint. The mean of urinary 1-OHP concentration ($51.63{\pm}3.144{\mu}\;mol/mol$ creatinine) of workers in steel-pipe coating industries was the higher than that ($2.33{\pm}4.709{\mu}\;mol/mol$ creatinine) of workers in paint manufacture industries. The mean of urinary 1-OHP concentration of smokers was the higher than that of non-smokers. There was significant correlation between the urinary concentration of 1-OHP and the environmental concentration of PAHs (r=O.S48, p<0.001), pyrene(r=0.859, p<0.001), and urinary cotinine (r=0.324, p<0.05). The regression equation between the urinary concentration of 1-OHP in ${\mu}g/g$ creatinine($C_{1-OHP}$) and airborne concentration of PAHs (or pyrene) in ${\mu}g/m^3$ ($C_{PAHs}$ or Cpyrene) is: Log ($C_{1-OHP}$)=-0.650+0.889×Log($C_{PAHs}$), where $R^2=0.694$ and n=38 for p<0.001.Log ($C_{1-OHP}$)=1.087+0.707${\times}$Log(Cpyrene), where $R^2=0.713$ and n=38 for p<0.001. From the results of stepwise multiple regression analysis about 1-OHP, significant independents were total PAHs and urinary cotinine (adjusted $R^2=0.743$, p<0.001). In this study, there were significant correlation between the urinary concentration of 1-OHP and the airborne concentration of PAHs. The urinary 1-OHP was effective index as a biomarker of airborne PAHs in workplace. But it was influenced by non-occupational PAHs source, smoking.